坐标变换

Direct3D基础(顶点坐标变换)

我的梦境 提交于 2019-12-26 20:07:06
开始的话:顶点坐标变换时Direct3D学习中的入门基础,在这里将详述其原理: Direct3D中渲染三维对象的过程分为两个阶段:《1》T&L(Transforming and Lighting),即坐标变换和光照; 《2》光栅化处理阶段。 一,T&L流水线: 如下图: 1,世界变换和世界坐标系( 局部坐标变为世界坐标 ): 物体在三维空间中的变形和运动的过程称为世界变换(平移,旋转,缩放),这个三维空间就是世界空间,其坐标系就是三维坐标系 世界变换 事实上就是将物体顶点从模型空间转换到世界空间中,模型空间其实就是在三维设计软件(如3DSMAX)中为物体设定的坐标系,也称局部坐标系。而世界坐标则是所有物体都是用同一个世界坐标原点的坐标系,变换就是指对模型进行平移,旋转,缩放及它们的任意组合变换。 使用以下公式对点P1进行世界变换。 P2(X,Y,Z,1)= dot( P1(X,Y,Z,1), M ) M 为世界变幻矩阵,它实现物体的平移,旋转,缩放,dot为点乘,P2为变换后的坐标,p1为变换前的坐标。 以下为实现世界坐标矩阵变换的DirectX代码(C++): D3DXMATRIX matWorld; // 世界变换矩阵 D3DXMATRIX matTranlate,matRotation,matScale; // 变换矩阵,旋转矩阵,缩放矩阵 D3DX

OSG 两个相机

独自空忆成欢 提交于 2019-12-20 21:09:58
在场景中创建两个视口。其中一个用于从坦克驾驶员的视角观察场景。该视口将被渲染于屏幕的上半部分。第二个视口由缺省的osgViewer::Viewer类接口(轨迹球,飞行等控制器)控制。它将被渲染于屏幕的中下部分。 概述: OSG向开发人员提供了各种的抽象层次接口。前面的教程讨论的主要是一些较高层级的接口应用:例如使用Viewer类来控制视点,场景,交互设备和 窗口系统。OSG的优势之一,就是可以允许开发者在使用高层次的接口的同时,访问较低层次的抽象接口。本章将使用一些低抽象层级的功能,对视点进行控制, 并使用相应的类渲染场景。 代码: 为了创建两个视口,我们需要提供两个独立可控的摄像机。与OSG 1.2版本中所述不同的是,本例中将不再使用Prodecer::CameraConfig类,而是将多个不同的视口添加到组合视口 CompositeViewer类当中。下面的函数即用于实现添加视口并设置其中的摄像机位置。 void createView (osgViewer::CompositeViewer *viewer,//查看器,一个相框 osg::ref_ptr<osg::Group> scene,//场景 osg::ref_ptr<osg::GraphicsContext> gc,//显示设置定义相框的大小,View和Viewr在屏幕上的大小,位置 osgGA:

电机FOC中的坐标变换(CLARK+PARK+公式推导+仿真+C语言实现)【转载】

情到浓时终转凉″ 提交于 2019-12-20 00:17:37
0 前言 今天获知了,电机FOC包含了SVPWM、坐标转换、信号采集反馈、PID闭环控制等,这个控制策略,统称为FOC控制。一般SVPWM算法的实现是在静止的αβ坐标系上实现。而PID控制器由于是对直流参考信号的跟踪效果较好,因此三相交流电会经过坐标变换,在旋转的dq坐标轴上,可以用直流量描述电枢绕组的合成矢量。 FOC控制中,有两种坐标转换需要注意的,分别是clark变换,和park变换。clark变换将abc坐标系转换为αβ坐标系,而park变换将静止的αβ坐标系转换为旋转的dq坐标系。 1 clark变换 其实直接可以把转换公式列出。 写成转换矩阵,就是: clark变换的逆变换: 写成转换矩阵,就是: 将两个转换矩阵相乘,应该是一个单位矩阵,系数K的作用是可以将转换变为等幅值转换或者等功率转换。 当 ,是等幅值转换;当 ,是等功率转换。 1.1 matlab仿真 在matlab/simulink中搭建仿真模型: abcToAlphabeta中的代码: function y = fcn(a,b, c ) %#eml alpha = a - b/ 2 - c / 2 ; beta = sqrt( 3 )/ 2 * (b - c ); y = ( 2 / 3 )*[alpha;beta]; alphabetaToABC中的代码: function y = fcn (alpha

位置角度平移旋转,“乱七八糟”的坐标变换

风流意气都作罢 提交于 2019-12-11 01:19:15
​本文转载自微信公众号ROBOTICS 原作者:CC 编辑:古月居 原文链接: https://mp.weixin.qq.com/s/eOq5QweS-VIg2e0qmkihMw 今天我们要讲所有学习机器人学的人都需要具备的一项基本技能——坐标变换。看明白这篇文章,你需要一点基础的向量和矩阵知识,不用多,只要知道 向量的加减,点乘(内积);矩阵的定义、加减乘逆以及转置;还有矩阵与向量的乘法 就够了。 机器人学为什么需要坐标变换呢?因为控制一个机械臂的根本,就是弄明白每一个关节的joint position与end effector的position and orientation的关系,用更简洁的话来讲,就是joint space与operational space之间的互相映射关系。这里有两个小说明: 不仅仅是位置/角度的映射关系,也包括 速度、加速度、力或扭矩的映射关系 所有我直接用英文而没有翻译的词汇,都是我在 第一篇文章 中解释过的重要概念 好了,接下来就让我们暂时不谈机器人,先把让很多人觉得头疼的坐标变换搞明白。 坐标系(coordinate system) 描述空间位置、速度和加速度,大部分都是用笛卡尔坐标系,也就是大家熟知的三个互相垂直的坐标轴组成的坐标系。我只想强调几个地方: 像题图那样的彩色坐标系,若无特别说明,都是 rgb(红绿蓝)依次对应 xyz

平面坐标变换 矩阵形式

最后都变了- 提交于 2019-12-07 22:24:32
转 http://learn.gxtc.edu.cn/NCourse/jxcamcad/cadcam/Mains/main11-2.htm 2.3.3 基本二维变换 基本二维变换有比例变换(Scaling)、旋转变换(Rotating)、错切变换(Shearing)和平移变换(Translating)。 1)比例变换 比例变换就是将平面上任意一点的横坐标放大或缩小S11倍,纵坐标放大或缩小S22倍,即 其中S称为比例变换矩阵。图2.24是比例变换的几个例子。图中(b)是S11=S22的情况,(C)是S11≠S21的情况 2)旋转变换 旋转变换就是将平面上任意一点绕原点旋转θ角,一般规定逆时针方向为正,顺时针方向为负。从图2.25可推出变换公式: 3)错切变换 在旋转变换矩阵中,非对角线元素有何几何意义?观察图2.26中的例子。变换矩阵中元素S21起作把图形沿X方向“错切”的作用,Y值越小,错切量越小。S12则有将图形向Y方向“错切”的作用,同样其作用的大小与X值成正比。 4)平移变换 平移交换指的是将平面上任意一点沿X方向移动C。,沿Y方向移动ty(图2.27),其变换公式为 由上式可见,平移交换不能直接用2X2矩阵来表示。下述齐次坐标变换矩阵则可解决这个问题。 注意:这句话关键(疑问点在于为什么二位转换需要3x3的矩阵) 2.3.4 齐次坐标 如把平面上的点P=[Xy

实验5 OpenGL变换综合练习

Deadly 提交于 2019-12-05 00:23:55
1 .实验目的: 理解掌握OpenGL程序的投影变换,能正确使用投影变换函数,实现正投影与透视投影。 2 .实验内容: (1) 使用图a中的尺寸绘制小桌,三维效果图见图b。要求绘制小桌各部件时只能使用函数glutSolidCube()和变换函数,不能使用函数glVertex()等直接指定顶点位置; (2)添加键盘按键或右键菜单控制实现小桌效果图在正投影和透视投影模式间的切换;在此基础上,考虑一点透视、两点透视、三点透视三类效果图的显示。 3 .实验原理: OpenGL通过相机模拟、可以实现 计算机 图形学中最基本的三维变换,即几何变换、投影变换、视口变换等,同时,OpenGL还实现了矩阵堆栈等。理解掌握了有关坐标变换的内容,就算真正走进了精彩地三维世界。 一、OpenGL中的三维物体的显示 (一)坐标 系统 在现实世界中,所有的物体都具有三维特征,但计算机本身只能处理数字,显示二维的图形,将三维物体及二维 数据 联系在一起的唯一纽带就是坐标。 为了使被显示的三维物体数字化,要在被显示的物体所在的 空间 中定义一个坐标系。这个坐标系的长度单位和坐标轴的方向要适合对被显示物体的描述,这个坐标系称为世界坐标系。世界坐标系是始终固定不变的。 OpenGL还定义了局部坐标系的概念,所谓局部坐标系,也就是坐标系以物体的中心为坐标原点,物体的旋转或平移等操作都是围绕局部坐标系进行的,这时

STN空间变换网络

佐手、 提交于 2019-11-30 16:14:04
STN的主要思想是通过网络学习一个变化参数,然后计算出新图在原图上对应的坐标,再通过某种填充方法填充新图。 使得得到的新图很好的适应nn训练。可以理解为是拿来把不规范的图像变换为标准形式的图像。 网络结构图如下: 主要步骤分为以下三步: (1) Localisation net 计算出变化参数,是一个仿射变换的参数,用来表示原图与新图坐标的对应。 (2) Grid generator 通过变换参数和新图来计算出原图坐标,这一步是做个矩阵运算,以目标图V的所有坐标点为自变量,加入变化 参数做一个矩阵运算,得到输入图U的坐标点。 (3) Sampler 通过原图坐标以及原图来填充新图;通常采用双线性插值,可以防止梯度不变。 具体的例子如下: 参考链接: https://www.cnblogs.com/liaohuiqiang/p/9226335.html 来源: https://www.cnblogs.com/ywheunji/p/11603537.html

Qt绘图之QGraphicsScene QGraphicsView QGraphicsItem详解

≡放荡痞女 提交于 2019-11-30 00:17:51
Graphics View提供了一个界面,它既可以管理大数量的定制2D graphical items,又可与它们交互,有一个view widget可以把这些项绘制出来,并支持旋转与缩放。这个柜架也包含一个事件传播结构,对于在scene中的这些items,它具有双精度的交互能力。Items能处理键盘事件,鼠标的按,移动、释放、双击事件,也可以跟踪鼠标移动。Graphics View使用BSP树来提供对item的快速查找,使用这种技术,它可以实时地绘制大规模场景,甚至以百万items计。Graphics View在Qt 4.2中被引用,它替代了它的前辈QCanvas。 Graphics View的体系结构 Graphics View提供的是一种类似于Qt model-view的编程。多个views可以监视同一个场景,而场景包含多个具有多种几何外形的items。 场景 QGraphicsScene 表示Graphics View中的场景,它有以下职责: 为管理大量的items提供一个快速的接口。 传播事件到每个item。 管理item的状态,例如选择,焦点处理。 提供未经变换的渲染功能,主要用于打印。 场景作为QGraphicsItem对象的容器。通过调用QgraphicsScene::addItem()把这些Items加入到场景中。可以使用众多的查找函数来获取特定的items

图像几何变换(缩放、旋转)中常用的插值算法

醉酒当歌 提交于 2019-11-29 06:38:51
最邻近插值: 这是一种最为简单的插值方法,在图像中最小的单位就是单个像素,但是在旋转个缩放的过程中如果出现了小数,那么就对这个浮点坐标进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目标像素的像素值。取整的方式就是:取浮点坐标最邻近的左上角的整数点。 举个例子: 3*3的灰度图像,其每一个像素点的灰度如下所示 我们要通过缩放,将它变成一个4*4的图像,那么其实相当于放大了4/3倍,从这个倍数我们可以得到这样的比例关系: 根据公式可以计算出目标图像中的(0,0)坐标与原图像中对应的坐标为(0,0) (由于分母不能为0,所以我们将公式改写) 然后我们就可以确定出目标图像中(0,0)坐标的像素灰度了,就是234。 然后我们在确定目标图像中的(0,1)坐标与原图像中对应的坐标,同样套用公式: 我们发现,这里出现了小数,也就是说它对应的原图像的坐标是(0,0.75),显示这是错误的,如果我们不考虑亚像素情况,那么一个像素单位就是图像中最小的单位了,那么按照最临近插值算法,我们找到距离0.75最近的最近的整数,也就是1,那么对应的原图的坐标也就是(0,1),像素灰度为67。 双线性内插值: 对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v),其中i、j均为非负整数,u、v为[0,1)区间的浮点数,则这个像素得值 f(i+u,j+v) 可由原图像中坐标为