信号频率

官科 和 雷达测距测速

老子叫甜甜 提交于 2020-01-06 17:21:10
写这篇文章的 原因 是 看到了 民科吧 里的 一个 帖 《民科与12瓶弹球》 http://tieba.baidu.com/p/6337533980 , 聪明 的 官科 要 怎样 测量 出 敌机 的 距离 和 速度 ? 题目如下 : 我机跟踪敌机(假设在同一直线上飞行),我机在t1时刻向敌机发射频率为f1的雷达信号,在t2时刻接收到由敌机反射的频率为f2的雷达信号。求我机与敌机的相对速度v和我机与敌机的距离L。 本文已发到了 民科吧 《官科 和 雷达测距测速》 http://tieba.baidu.com/p/6430604355 。 来源: https://www.cnblogs.com/KSongKing/p/12156167.html

心电信号的特征提取、分析与处理

你。 提交于 2020-01-01 05:20:30
心电信号的特征提取、分析与处理* 数据来源:MIT-BIH数据库(可从以下数据中任选两组进行实验) 给出4组不同病例的心电信号数据,分别命名为“100-2-3”,“105-2-3”,“109-2-3”,“111-2-3”,每组数据以“.mat”形式存储。(在文章最后面附带四组数据库的压缩包) 每组数据长度N=2048,采样率fs=360Hz(硬件采集心电信号时,每秒采集360个点。注意设计FIR,IIR时可能用到该采样率。). 即2048点对应时间约为5.69s() ## 内容 (1)谱分析: 取两段心电信号数据(不同病例),对该数据进行频谱分析(幅度谱、相位谱、功率谱); (2)相关分析:分别计算两段心电信号的均值、方差、自相关函数与互相关函数;分析两段信号的相干函数曲线 对于相关函数进行循环相关函数与线性相关函数的对比; (3)数字滤波器设计: 取一段心电信号,添加白噪声。分别作出原始信号、加噪信号的图;作出原始信号、加噪信号的自相关曲线,分析估计心电信号的准周期;取一段心电信号,添加高频噪声(1k-2khz),如高频正弦信号,频率自己选择。结合(1)中得出的结论,即ECG的主要能量分布结果,设计数字滤波器(IIR或FIR),去除高频噪声。(也可直接设计数字滤波器去除基线漂移)要求:对滤波器的截止频率的设置要给出说明; (4)维纳滤波器去除工频干扰: 取一段心电信号

硬件设计3---什么是电容?

穿精又带淫゛_ 提交于 2019-12-26 12:23:38
时间: 2018.3 .12 作者:Tom 工作:HWE 说明:如需转载,请注明出处。 1.什么是电容? 百度百科中介绍"电容器,通常简称其容纳电荷的本领为电容,用字母 C 表示。定义 1 :电容器,顾名思义,是'装电的容器',是一种容纳电荷的器件。英文名称: capacitor 。电容器是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,旁路,滤波,调谐回路, 能量转换,控制等方面。定义 2 :电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。" 我们知道 电容的基本功能就是充电和放电,而电容的充放电也使得电容两端没有电压突变。电容的基本特性是:通交流,隔直流;通高频,阻低频。 电容对于硬件工程师来说也是一个非常重要的元件,对电容的熟练应用也是基本功之一。 电容是电路设计中最为常见的器件,但同时电容也是最容易被忽略的器件。很多单板的设计失败,有时根本原因就在电容。 2.电容的阻抗及特性参数 电容的阻抗:Xc = 1/(wC) = 1/(2*π*f*C)。 对于同一个f,C越大,Xc越小。对于同一个C,f越高,Xc越小。 电容的主要特征参数: 额定电压: 这个使我们硬件设计时候非常关心的。如果电压超过电容器的耐压,电容器可能被击穿,造成不可修复的永久损伤。一般情况下,无极性电容的额定电压较高,极性电容的额定电压较低。

傅里叶变换与拉普拉斯变换的物理解释及区别

一个人想着一个人 提交于 2019-12-19 09:39:56
傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话 ,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式

音频信号混叠

本小妞迷上赌 提交于 2019-12-18 08:18:59
奈奎斯特定理:采样率必须是被采样数据的2倍以上. 1.什么是混叠? 需要被采样的数字信号频率高于采样频率1/2的频率,高出来的频率将被重采样成低于采样率的1/2频 率的信号,高频信号被低频信号代替,两种波形完全重叠在一起,形成严重失真,这种频谱的重叠导致 的失真称为混叠. 2.如何消除混叠?两种方式:  <1>.提高采样频率 提高到被采样频率的2倍以上,但不可能将采样频率提高到无限大, 通过提高采样频率避免混叠是有限 制的. <2>.采用抗混叠滤波器. 在采样频率一定的,通过低通滤波器滤掉高于1/2的频率成分,低通滤波器的信号则可避免出现频率混叠. 若不能确保信号的最高频率小于采样频率的1/2,就必须通过低通滤波器限制输入信号的频率,过滤掉高 于采样率1/2的频率。 3.注意 低通滤波器:通低频,阻高频. 高通滤波器:通高频,阻低频. Reference 来源: CSDN 作者: 慢慢的燃烧 链接: https://blog.csdn.net/u010164190/article/details/103584246

雷达

送分小仙女□ 提交于 2019-12-18 02:21:58
雷达原理知识点汇总 第一章 绪论 1、雷达概念(Radar): radar的音译,“Radio Detection and Ranging ”的缩写。原意是“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。 2、雷达工作原理: 发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。 3、雷达的任务: 利用目标对电磁波的反射来发现目标并对目标进行定位。随着雷达技术的发展,雷达的任务不仅仅是测量目标的距离、方位和仰角,而且还包括测量目标的速度,以及从目标回波中获取更多有关目标的信息。 4、从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息? 斜距R : 雷达到目标的直线距离OP。 方位角α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。 俯仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。 5、雷达工作方式 连续波和脉冲波 6、雷达测距原理 R=(C∆t)/2 式中,R为目标到雷达的单程距离,

接口技术课程设计——一种基于MFC构造自动测量系统

时间秒杀一切 提交于 2019-12-16 07:07:48
一种基于MFC构造自动测量系统 第一部分 课程设计概述 1 课程设计的目的与任务 1.1 使用智能仪器构造自动测量系统 1.2 使用MFC实现程序结构 2 课程设计题目 3 设计功能要求 4 课程设计的内容与要求 5 实验仪器设备及器件 第二部分 设计方案工作原理 1 预期实现目标定位 2 技术方案分析 2.1 系统结构框图 2.2 信号发生器 2.3 程控方式 2.4 数字示波器 2.4.1 概述 2.4.2 函数信号发生器技术指标 2.4.3 触发系统 2.4.4 显示系统 2.4.5 接口 3 功能指标实现方法 3.1 实现方案分析 3.2 各部分实现 第三部分 核心硬件设计实现 1 关键部分性能分析 2 接口说明 2.1 RS232接口 2.2 技术指标 2.3 数字信号发生器接口 3 被测系统搭建 3.1 多波形整体设计 3.2 单元电路设计 3.2.1 555多谐振荡器 3.2.2 74LS74分频电路 3.2.3.低通滤波器 第四部分 系统软件设计分析 1 系统总体工作流程 2 程序设计思路 3 示波器显示类 3.1 程序结构 3.2 主要功能 4 关键模块程序清单 4.1 信号发生器初始化 4.2 RS232发指令 4.3 示波器初始化 4.4 示波器显示程序 5 调试分析 5.1 总体说明 5.2 程控功能展示 5.3 示波器显示 第五部分 心得体会 第六部分

宽带的理解

生来就可爱ヽ(ⅴ<●) 提交于 2019-12-13 19:12:58
一、带宽的两种概念   如果从电子电路角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固有通频带,这个概念或许比较抽象,我们有必要作进一步解释。大家都知道,各类复杂的电子电路无一例外都存在电感、电容或相当功能的储能元件,即使没有采用现成的电感线圈或电容,导线自身就是一个电感,而导线与导线之间、导线与地之间便可以组成电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容、电感,都会对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品质。这种效应与交流电信号的频率成正比关系,当频率高到一定程度、令信号难以保持稳定时,整个电子电路自然就无法正常工作。为此,电子学上就提出了“带宽”的概念,它指的是电路可以保持稳定工作的频率范围。而属于该体系的有显示器带宽、通讯/网络中的带宽等等。   而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带宽、总线带宽、网络带宽等等,都是以“字节/秒”为单位。我们不清楚从什么时候起这些数据传输率的概念被称为“带宽”,但因业界与公众都接受了这种说法,代表数据传输率的带宽概念非常流行,尽管它与电子电路中“带宽”的本意相差很远。   对于电子电路中的带宽,决定因素在于电路设计。它主要是由高频放大部分元件的特性决定,而高频电路的设计是比较困难的部分,成本也比普通电路要高很多。这部分内容涉及到电路设计的知识

ADC参数详解

≯℡__Kan透↙ 提交于 2019-12-09 16:16:49
特性或指标总述 本文将从以下特性进行简单的叙述。结合了《ADC设计基础》和TI的一些教学视频。 分辨率 转换误差 转换速度 采样率 奈奎斯特采样准则 混叠和抗混叠滤波器 DNL INL 热噪声 谐波失真 THD SNR ENOB SFDR IMD 孔径抖动 孔径延迟 奈奎斯特区 补充 分辨率 一般ADC都说注明是8bit,16bit或者是24bit。这里的数值也就是分辨率的意思。分辨率是衡量ADC精度一个非常重要的指标。比如采集的电压范围是0-5V,那么8bit的ADC的最小刻度就是5/2^8 =0.0195V,16bit的ADC的最小刻度是5/2^16=0.000195V.从这两个数值来看,我们就知道16bit的ADC可以采集到更小的电压。所以这里的分辨率表征的ADC的最小刻度的指标。同时分辨率也只能算是间接衡量ADC采样准确的变量。直接衡量ADC采集准确性的是精度。 转换误差 也可以称之为精度。精度是在ADC最小刻度基础上叠加各种误差的参数。是可以直接衡量ADC采样精准的指标。通常ADC的精度=N*LSB+Vc_sample+Vshift+Vnoise+Vref+… N一般在ADC的数据手册中体现,表征ADC的集散误差。Vc_sample是ADC内部的采样电容引起的误差。Vshift一般是外围电路带来的偏置,Vnoise是综合前端的驱动电路和ADC得出的噪声电压

零中频架构,这个帖子讲透了

允我心安 提交于 2019-12-06 15:08:18
零中频(ZIF)架构自无线电初期即已出现。如今,ZIF架构可以在几乎所有消费无线电应用中找到,无论是电视、手机,还是蓝牙技术。ZIF技术取得的最新进步对现有高性能无线电架构形成了挑战,其带来的新产品取得了性能上的突破,能够实现ZIF技术以前望尘莫及的新型应用。本文将探讨ZIF架构的诸多优势,介绍这些优势如何使无线电设计性能达到的新高度。 无线电工程师面临的挑战 不断增多的需求给当今的收发器架构师带来了挑战,因为我们对无线设备和应用的需求呈持续增长之势。结果,消费者需要持续访问更多的带宽。 数年以来,设计师已经从单载波无线电走向多载波无线电技术。当一个频段的频谱被全部占用时,就分配新的频段;目前,必须为40多个无线频段提供服务。由于运营商在多个频段都有频谱,并且这些资源必须协调起来,所以,如今的趋势是走向载波聚合,而载波聚合则会导致多频段无线电。这又会带来更多的无线电,其性能更高,需要更优秀的带外抑制性能,更出色的辐射性能,以及更低的功耗水平。 虽然无线需求在快速增长,但功耗和空间预算并未增长。事实上,在功耗和空间节省需求不断增强的条件下,同时降低碳排放和物理尺寸非常重要。为了实现这些目标,需要从新的视角去认识无线电架构和分区。 集成 为了增加特定设计中的无线电数目,必须减小每件无线电器件的尺寸。传统方法是逐步把更多的设计集成到一片硅片当中。虽然从数字角度来看,这样做可能是合理的