7天入门机器学习总结
初识机器学习 机器学习的概念 机器学习是一种从数据当中发现复杂规律,并且利用规律对未来时刻、未知状况进行预测和判定的方法。机器学习是一种从数据当中发现复杂规律,并且利用规律对未来时刻、未知状况进行预测和判定的方法。 机器学习的类型 按学习方式分为三大类 监督学习(Supervised learning):从给定的训练数据集(历史数据)中学习出一个函数,当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集需要包括输入和输出,也可以说是特征和目标/Label。训练集中的目标是由人标注的。 非监督学习(Unsupervised learning):与监督学习相比,输入的数据没有人为标注的结果,模型需要对数据的结构和数值进行归纳。 强化学习(Reinforcement learning):输入数据可以刺激模型并且使模型做出反应。反馈不仅从监督学习的学习过程中得到,还从环境中的奖励或惩罚中得到。 机器学习的一般过程 机器学习是一个由数据建立模型的过程。 首先是对训练数据进行数据处理,选择算法进行建模和和评估,再对算法进行调优,最后得到一个模型。 数据处理到算法调优这个过程是一个不断完善、循环往复的过程,这个过程相当于做实验,直到得出一个在接受度范围内的模型,但是这个过程是可以被一些先验经验指导的,需要识别问题、识别场景、算法原理掌握等等。 机器学习中的数据处理 样本级数据处理