Spark之RDD
一:RDD简介 (一)RDD概念 RDD(Resilient Distributed DataSet),弹性分布式数据集, 是Spark中最基本,也是最重要的数据抽象, 它 代表一个不可变、可分区、里面的元素可并行计算的集合 。RDD具有数据流模型的特点:自动容错、位置感知度调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能重用工作集,这极大地提升了查询速度。因为有RDD,所以Spark才支持分布式的计算。RDD由分区组成。 (二)RDD的五个特性 (1)一组分片( Partition ),即数据集的基本组成单位。---RDD会被分片处理,用于并行计算 对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。 (2)一个计算每个分区的函数。---一个对每个split(数据分区)进行计算的函数,也称为RDD的算子 Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。 (3)RDD之间的依赖关系。(DAG有向无环图调度构造依赖关系) RDD的每次转换都会生成一个新的RDD