mpi

MPI process synchronization

我的梦境 提交于 2020-04-30 10:25:48
问题 I'm still confused about the implementation of my program using MPI. This is my example: import mpi.*; public class HelloWorld { static int me; static Object [] o = new Object[1]; public static void main(String args[]) throws Exception { //10 processes were started: -np 10 MPI.Init(args); me = MPI.COMM_WORLD.Rank(); if(me == 0) { o[0] = generateRandBoolean(0.5); for(int i=1; i<10;i++) MPI.COMM_WORLD.Isend(o, 0, 1, MPI.OBJECT, i,0); if((Boolean)o[0]) MPI.COMM_WORLD.Barrier(); } else { (new

Cannot install mpi4py using conda AND specify pre-installed mpicc path

折月煮酒 提交于 2020-04-16 03:28:08
问题 I have tried installing mpi4py with: env MPICC=path/to/openmpi/bin/mpicc conda install -c anaconda mpi4py But I get this message: The following NEW packages will be INSTALLED: mpi anaconda/linux-64::mpi-1.0-mpich mpi4py anaconda/linux-64::mpi4py-3.0.3-py37h028fd6f_0 mpich anaconda/linux-64::mpich-3.3.2-hc856adb_0 Which seems to show that "MPICC=path/to/openmpi/bin/mpicc" was ignored. Indeed, after installing mpi4py with mpich, and trying to run the following simple code with mpirun -n 2

MPI点到点通信之一:阻塞通信

╄→尐↘猪︶ㄣ 提交于 2020-03-17 01:27:33
某厂面试归来,发现自己落伍了!>>> 点到点通信要求send和recv能够匹配,也即一个send对应于一个recv。 阻塞通信中,消息发送有四种模式: 1).标准模式,MPI_Send 2).缓存(Buffer)模式,MPI_Bsend 3).就绪(Ready)模式,MPI_Rsend 4).同步(Synchonous)模式,MPI_Ssend 1. 标准通信模式 中,理论上send会阻塞直到目标进程recv执行接收数据后send才会返回。但是这种模式下MPI环境基本上会对发送进程send的数据进行缓冲,这时即使接收进程没有进行recv发送进程的send也会立即返回。如果发送数据超过MPI提供的缓冲区大小,那么send就会阻塞到缓冲区这里。 int MPI_Send(void *buf , int count , MPI_Datatype datatype , int dest , int tag , MPI_Comm comm); int MPI_Recv(void *buf , int count , MPI_Datatype datatype , int source , int tag ,MPI_Comm comm , MPI_Status *status); send和recv是非对称的。recv会因为没有接收到目标进程的消息而阻塞,不过可以指定接收进程接收通用信封

【MPI+codeblocks】MPI环境设置

若如初见. 提交于 2020-03-16 21:34:28
某厂面试归来,发现自己落伍了!>>> 下载Code::Blocks & MPICH2 config Code::Blocks like below: Search Directories (Compiler): C:\Program Files\MPICH2\include Search Directories (Linker): C:\Program Files\MPICH2\lib Linker settings: mpi.lib 遇到的问题 con't find mpi.lib(Linker settings),方法:将mpi.lib改为绝对路径C:\Program Files\MPICH2\lib\mpi.lib 运行后的错误提示: undefined reference to ‘MPI_Comm_rank’、‘MPI_Comm_size’、‘MPI_Send’、‘MPI_Recv’、‘MPI_Finalize’ 以下来自【 http://svn.code.sf.net/p/codeblocks/code/trunk/COMPILERS 】: 安装编译器以在Code :: Blocks中使用所需的步骤的描述。 下载GNU GCC编译器和GDB调试器 ----------------------------------------------- 转到“ http://www

MPI环境配置(二)

╄→гoц情女王★ 提交于 2020-03-12 02:12:04
MPI环境配置(二) 在云服务器上搭建MPI分布式集群环境,采用NFS统一数据,这一次配置时遇到了几个问题,记录一下 详细MPI集群环境配置 NFS环境搭建 ,注意,NFS不需要ssh免密登录,不相关 本次遇到的问题 1、免密登录,需要能免密登录本机 有两台机器,node1和node2 那么不仅需要node1能够免密登录node2 和 node2能够免密登录node1, 还需要node1能够免密登录node1 和 node2能够免密登录node2 2、这一次使用的用户名都是wj,但是依然出现了错误: Host key verification failed 一直以为是 hosts 文件配置出错或者是 ssh 免密登录没有配置好,最后发现是在执行程序时,使用的命令有问题 错误命令: sudo mpiexec -n 4 -f /home/wj/nfs/mpi_config_file ./cpi 正确命令: mpiexec -n 4 -f /home/wj/nfs/mpi_config_file ./cpi 区别就是,使用 sudo 后,执行程序的用户变为 root ,而在配置免密登录时,配置的是用户 wj 的免密登录 正确执行命令为: nfs 服务端配置在 wj 机器上,如上,能较快得到运算结果 但是在 nfs 客户端机器 ecs-sn3-medium-2-linux

MPI学习笔记

荒凉一梦 提交于 2020-03-04 06:53:15
MPI学习笔记 利用MPI可以加速排序算法。 调用c++标准库的sort对1e7的数据进行排序,大约需要2.2秒的时间。 使用MPI将程序并行化,可以大大加快速度。 方法一 将主线程待排序的数组分为两部分,送到两个子线程排序,排完之后再送到主线程,将它们合并起来。 代码如下: # include <iostream> # include <mpi.h> # include <algorithm> using namespace std ; const int MAX_size = 1e7 ; int main ( int argc , char * * argv ) { int numprocs , myid , source ; MPI_Status status ; MPI_Init ( & argc , & argv ) ; MPI_Comm_rank ( MPI_COMM_WORLD , & myid ) ; MPI_Comm_size ( MPI_COMM_WORLD , & numprocs ) ; int siz = MAX_size / 2 ; if ( myid == 0 ) { int * nums = new int [ MAX_size + 3 ] ; for ( int i = 0 ; i < MAX_size ; i ++ ) { nums [ i ]

Send a c++ std::vector<bool> via mpi

爷,独闯天下 提交于 2020-03-01 04:32:27
问题 I know that the storage of a std::vector<bool> is not necessarily an array of bools . If I want to send receive int data stored in a std::vector<int> , I would use MPI_Send(vect.data(),num_of_ints,MPI_INT,dest_rk,tag,comm) . How should I use MPI_Send to send a std::vector<bool> ? In particular : Can / should I use vect.data() as the pointer to buffer ? What MPI type should I give ? Somehow, I feel like MPI_CXX_BOOL does not apply (see this question) What number of elements should I give ?

Does MPI provide preprocessor macros?

杀马特。学长 韩版系。学妹 提交于 2020-02-20 07:49:12
问题 Does MPI standard provide a preprocessor macro, so my C/C++ code could branch if it is compiled by MPI-enabled compiler? Something like _OPENMP macro for OpenMP. 回答1: According to the MPI standard (page 335), you can check for the MPI_VERSION macro: In order to cope with changes to the MPI Standard, there are both compile-time and runtime ways to determine which version of the standard is in use in the environment one is using. The "version" will be represented by two separate integers, for

(simple example) MPI parallel io writing garbage

爷,独闯天下 提交于 2020-02-08 07:44:04
问题 I am trying to make multiple processes write an integer buffer into a file at the same time using MPI parallel io. To achieve this goal I searched various websites: MPI and Parallel IO Google book search Parallel IO with MPI And I tried to learn their teachings. To test them i created the following simple code in c++: #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <mpi.h> #define BUFSIZE 100 using namespace std; int main(int argc, char *argv[]) { int myrank, buf[BUFSIZE],

Main Thread Pinning

自古美人都是妖i 提交于 2020-02-07 14:21:10
https://software.intel.com/en-us/mpi-developer-reference-windows-main-thread-pinning Main Thread Pinning Use this feature to pin a particular MPI thread to a corresponding CPU within a node and avoid undesired thread migration. This feature is available on operating systems that provide the necessary kernel interfaces. Processor Identification The following schemes are used to identify logical processors in a system: System-defined logical enumeration Topological enumeration based on three-level hierarchical identification through triplets (package/socket, core, thread) The number of a logical