数据库交易回测系列二:多因子Alpha策略回测
本系列文章将会介绍如何使用DolphinDB优雅而高效的实现量化交易策略回测。本文将介绍在华尔街广泛应用的多因子Alpha策略的回测。多因子模型是量化交易选股中最重要的一类模型,基本思路是找到某些和回报率最相关的指标,并根据这些指标,构建股票投资组合(做多正相关的股票,做空负相关的股票)。多因子模型中,单独一个因子的个股权重一般实现多空均衡(市场中性),没有暴露市场风险的头寸(beta为0,所以称之为alpha策略),能实现绝对收益。多个因子之间相互正交,方便策略配置,实现回报和风险的最优控制。另外,相比于套利策略(通常可以实现更高的sharpe ratio,但是scale不好),多因子alpha策略有很好的scale,可以配置大量的资金。多因子Alpha策略在对冲基金中的使用非常普遍。 1. 生成因子 本文的重点是实现多因子Alpha策略的回测框架。因子不是重点,这部分通常由金融工程师或策略分析师来完成。为了方便大家理解,文章以动量因子、beta因子、规模因子和波动率因子4个常用的风险因子为例,介绍如何在 DolphinDB database 中实现多因子回测。 输入数据表inData包含6个字段:sym (股票代码), date(日期), close (收盘价), RET(日回报), MV(市值), VOL(交易量) def genSignals(inData){