方差分析介绍(结合COVID-19案例)
作者|GUEST BLOG 编译|VK 来源|Analytics Vidhya 介绍 “事实是每个人都相信的简单陈述。也就是事实是没有错的,除非它被人发现了错误。假设有一个没人愿意相信的建议,那么它要直到被发现有效的时候才能成为事实。” –爱德华·泰勒 我们正在应对一场空前规模的流行病。全世界的研究人员都在疯狂地试图开发一种疫苗或COVID-19的治疗方法,而医生们正试图阻止这种流行病席卷整个世界。 我最近有了一个想法,把我的统计知识应用到这些大量COVID数据中。 考虑这样一个场景:医生有四种医疗方法来治疗病人。一旦我们有了测试结果,用最少时间治愈病人的治疗会是最好的方法。 但如果这些病人中的一些已经部分治愈,或者其他药物已经在治疗他们呢? 为了作出一个有信心和可靠的决定,我们需要证据来支持我们的做法。这就是方差分析的概念发挥作用的地方。 在本文中,我将向你介绍方差分析测试及其用于做出更好决策的不同类型。我将在Python中演示每种类型的ANOVA(方差分析)测试,以可视化它们并处理COVID-19数据。 注意:你必须了解统计学的基本知识才能理解这个主题。最好了解t检验和假设检验。 什么是方差分析测试(ANOVA) 方差分析,或称方差分析,可以看作是两组以上的t检验的推广。独立t检验用于比较两组之间的条件平均值。当我们想比较两组以上患者的病情平均值时,使用方差分析。