内容简介 第一,对某银行某次营销活动受众客户的特征进行了描述性统计,考察了营销活动的总体效果;同时还进行了特征间的相关性分析,筛选掉了与响应行为之间没有显著相关性的特征。 第二,分别考察了存款和个贷客户在年龄、年收入等6个特征上的分布情况,分析了存款和个贷客户的自然属性和消费行为特征,并据此构建了存款客户画像和个贷客户画像。 第三,运用Apriori关联规则算法分析了各类业务之间的关联,并重点总结出了存款客户中潜在个贷客户的特征。 第四,根据以上分析结果尝试为该银行扩大各类业务客户基数,提高获客能力提出建议。 最后,根据分析出的个贷客户画像对客户是否办理个贷业务进行建模,得出最优分类器;当有新的客户数据时便可以使用该模型对客户办理个贷业务的可能性进行预测。 关键词:Python,客户画像,二分类,关联分析 一、项目描述 1、项目说明 (1)数据来源:本项目所用数据来源于kaggle平台,该数据集展示了某银行某年一次贷款营销活动的5,000条客户信息记录。 (2)使用工具:本项目的分析和可视化都是使用Python完成的,但相关性分析用到了SPSS。 (3)数据描述:数据字典如下所示: 表1 数据字典 2、业务需求 2.1 业务背景 某银行是一家客户群不断增长的银行,但其贷款业务的客户基数较小,因此该银行希望能够将存款用户转化为贷款用户,扩大贷款业务量