卷积神经网络(CNN)之一维卷积、二维卷积、三维卷积详解
作者:szx_spark 由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为$14\times 14$,过滤器大小为$5\times 5$,二者做卷积,输出的数据维度为$10\times 10$($14-5+1=10$)。如果你对卷积维度的计算不清楚,可以参考我之前的博客 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上) 。 上述内容没有引入channel的概念,也可以说channel的数量为1。如果将二维卷积中输入的channel的数量变为3,即输入的数据维度变为($14\times 14\times 3$)。由于卷积操作中过滤器的channel数量必须与输入数据的channel数量 相同 ,过滤器大小也变为$5\times 5\times 3$。在卷积的过程中,过滤器与数据在channel方向分别卷积,之后将卷积后的数值相加,即执行$10\times 10$次3个数值相加的操作,最终输出的数据维度为$10\times 10$。 以上都是在过滤器数量为1的情况下所进行的讨论。如果将过滤器的数量增加至16,即16个大小为$10\times 10\times 3$的过滤器,最终输出的数据维度就变为$10\times 10