Transformer构建GAN
点击上方 “ 机器学习与生成对抗网络 ”,关注"星标" 获取有趣、好玩的前沿干货! 选自arXiv 作者: Yifan Jiang等 机器之心编译 机器之心编辑部 「attention is really becoming『all you need』.」 最近,CV 研究者对 transformer 产生了极大的兴趣并取得了不少突破。这表明,transformer 有可能成为计算机视觉任务(如分类、检测和分割)的强大通用模型。 我们都很好奇:在计算机视觉领域,transformer 还能走多远?对于更加困难的视觉任务,比如生成对抗网络 (GAN),transformer 表现又如何? 在这种好奇心的驱使下,德州大学奥斯汀分校的 Yifan Jiang、Zhangyang Wang,IBM Research 的 Shiyu Chang 等研究者进行了第一次试验性研究, 构建了一个只使用纯 transformer 架构、完全没有卷积的 GAN,并将其命名为 TransGAN 。与其它基于 transformer 的视觉模型相比,仅使用 transformer 构建 GAN 似乎更具挑战性,这是因为与分类等任务相比,真实图像生成的门槛更高,而且 GAN 训练本身具有较高的不稳定性。 论文链接:https://arxiv.org/pdf/2102.07074.pdf 代码链接:https: