iqr

r语言代写如何进行两组独立样本秩和检验3

穿精又带淫゛_ 提交于 2020-05-01 14:37:58
所述 配对双样品的Wilcoxon检验 一种的非参数检验,其可以被用于比较样品的两个独立数据。 本文介绍如何在ř中计算两个样本的秩检验。 可视化数据并在ř中计算的Wilcoxon测试 ř函数用于计算的秩检验 为了执行两个样本的Wilcoxon检验,比较两个独立样本(x&y)的 均值 ,R函数 wilcox.test ()可以如下使用: wilcox.test(x, y, alternative = "two.sided") x,y :数字向量 替代方案 :替代假设允许值是“two.sided”(默认值),“更大”或“更少”之一。 将数据导入R. 准备数据 将数据保存 在外部的.TXT选项卡或的的.csv文件中 将您的数据导入ř 如下: # If .txt tab file, use this my_data <- read.delim( file.choose()) # Or, if .csv file, use this my_data <- read.csv( file.choose()) 在这里,我们将使用一个示例数据集,其中包含18个人(9名女性和9名男性)的权重: # Data in two numeric vectors women_weight <- c( 38.9, 61.2, 73.3, 21.8, 63.4, 64.6, 48.4, 48.8, 48.5)

Plotting Quantiles values of boxplot in R inside a for loop

隐身守侯 提交于 2019-12-12 06:53:08
问题 Suppose I have a data frame airquality. I made a for loop to plot all the boxplot of the air-quality data set. name <- names(airquality) classes<-sapply(airquality,class) airquality[is.na(airquality)] <- 0 for (name in name[classes == 'numeric']) { boxplot(airquality[,name]) } Now I want to display all the Quantiles values i.e. First Quantile, Median, Third Quantile and mean as in the below image. I searched the web a lot but didn't find anything that suits my need. Below is the desired graph

how to use pandas filter with IQR?

给你一囗甜甜゛ 提交于 2019-11-30 10:56:54
Is there a built-in way to do filtering on a column by IQR(i.e. values between Q1-1.5IQR and Q3+1.5IQR)? also, any other possible generalized filtering in pandas suggested will be appreciated. As far as I know, the most compact notation seems to be brought by the query method. # Some test data np.random.seed(33454) df = ( # A standard distribution pd.DataFrame({'nb': np.random.randint(0, 100, 20)}) # Adding some outliers .append(pd.DataFrame({'nb': np.random.randint(100, 200, 2)})) # Reseting the index .reset_index(drop=True) ) # Computing IQR Q1 = df['nb'].quantile(0.25) Q3 = df['nb']

how to use pandas filter with IQR?

对着背影说爱祢 提交于 2019-11-29 16:53:03
问题 Is there a built-in way to do filtering on a column by IQR(i.e. values between Q1-1.5IQR and Q3+1.5IQR)? also, any other possible generalized filtering in pandas suggested will be appreciated. 回答1: As far as I know, the most compact notation seems to be brought by the query method. # Some test data np.random.seed(33454) df = ( # A standard distribution pd.DataFrame({'nb': np.random.randint(0, 100, 20)}) # Adding some outliers .append(pd.DataFrame({'nb': np.random.randint(100, 200, 2)})) #