分布式部署

分布式存储系统横向对比

折月煮酒 提交于 2020-01-21 03:26:34
(一)关键问题 数据分布 对于存储系统,最重要的问题就是数据分布,即什么样的数据放置在什么样的节点上。数据分布时需要考虑数据是否均衡、以后是否容易扩容等一系列问题。不同的数据分布方式也存在不同的优缺点,需要根据自身数据特点进行选择。 1)哈希分布 => 随机读取 取模直接哈希: 将不同哈希值的数据分布到不同的服务器上 关键: 找出一个散列特性很好的哈希函数 问题: 增加、减少服务器时的大量数据迁移 解决: 1)将<哈希值,服务器>元数据存储在元数据服务器中;2)一致性哈希 一致性哈希: 给系统每个节点分配一个随机token,这些token构成一个hash环。执行数据存放操作时,先计算key的hash值,然后存放到顺时针方向第一个大于或者等于该hash值的token所在节点。 关键: 哈希值变成了一个范围,每个物理节点上存储的数据是哈希值处于前一段范围的数据。 优点: 节点增加/删除时只会影响到在hash环中相邻的节点,而对其他节点没影响。 维护每台机器在哈希环中的位置方式:1) 记录它前一个&后一个节点的位置信息,每次查找可能遍历整个哈希环所有服务器;2) O(logN)位置信息,查找的时间复杂度为O(logN);3) 每台服务器维护整个集群中所有服务器的位置信息,查找服务器的时间复杂度为O(1) 虚拟节点: 将哈希取模的模数取得很大,就会得到更多的哈希值,这个哈希值成为逻辑节点

分布式session

青春壹個敷衍的年華 提交于 2020-01-21 01:17:59
什么是session session的官方定义是:Session:在计算机中,尤其是在网络应用中,称为“会话控制”。Session 对象存储特定用户会话所需的属性及配置信息。 说白了session就是一种可以维持服务器端的数据存储技术。session主要有以下的这些特点: 1. session保存的位置是在服务器端 2. session一般来说是要配合cookie使用,如果是浏览器禁用了cookie功能,也就只能够使用URL重写来实现session存储的功能 3. 单纯的使用session来维持用户状态的话,那么当同时登录的用户数量较多的时候,或者存在较多的数量的session会导致查询慢的问题 本质上:session技术就是一种基于后端有别于数据库的临时存储数据的技术 分布式session实现方式 tomcat+redis方案 方便,但是与tomcat容器重耦合 使用 session 的代码,跟以前一样,还是基于 tomcat 原生的 session 支持即可,然后就是用一个叫做 Tomcat RedisSessionManager 的东西,让所有我们部署的 tomcat 都将 session 数据存储到 redis 即可。 Spring session+redis 给 sping session 配置基于 redis 来存储 session 数据,然后配置了一个 spring

Redis分布式锁的实现

Deadly 提交于 2020-01-20 19:04:22
Redis分布式锁的实现 来自 https://www.cnblogs.com/Eugene-Jin/p/10801260.html 1.概述 分布式锁一般有三种实现方式:1.基于数据库实现分布式锁;2. 基于缓存(Redis,memcached,tair)实现分布式锁; 3.基于Zookeeper实现分布式锁。本片博客将介绍基于缓存实现分布式锁,这里主讲分别针对Redis 2.6.12 之前版本和Redis 2.6.12 及之后版本分布式锁的实现。 2.基于Redis(Redis 2.6.12版本之前)分布式锁的实现方式 (1)命令介绍   1)SETX    SETNX key value: setnx是『set if not exists』(即当key不存在时,则set)的简写。setnx具有原子性,当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0.   2)GETSET   GETSET key value: 将给定 key 的值设为 value ,并返回 key 的旧值(old value)。当 key 存在但不是字符串类型时,返回一个错误。当 key 没有旧值时,也即是, key 不存在时,返回 nil 。   3)GET   GET key: 返回 key 所关联的字符串值;如果 key 不存在那么返回特殊值 nil

15个nosql数据库

喜欢而已 提交于 2020-01-20 00:39:16
1、MongoDB 介绍 MongoDB是一个基于分布式文件存储的数据库。由C++语言编写。主要解决的是海量数据的访问效率问题,为WEB应用提供可扩展的高性能数据存储解决方案。当数据量达到50GB以上的时候,MongoDB的数据库访问速度是MySQL的10倍以上。MongoDB的并发读写效率不是特别出色,根据官方提供的性能测试表明,大约每秒可以处理0.5万~1.5万次读写请求。MongoDB还自带了一个出色的分布式文件系统GridFS,可以支持海量的数据存储。 MongoDB也有一个Ruby的项目MongoMapper,是模仿Merb的DataMapper编写的MongoDB接口,使用起来非常简单,几乎和DataMapper一模一样,功能非常强大。 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。 所谓“面向集合”(Collenction-Orented),意思是数据被分组存储在数据集中,被称为一个集合(Collenction)。每个 集合在数据库中都有一个唯一的标识名

轻松构建微服务之分布式任务调度

倖福魔咒の 提交于 2020-01-19 06:38:00
微信公众号: 内核小王子 关注可了解更多关于数据库,JVM内核相关的知识; 如果你有任何疑问也可以加我pigpdong [^1] 前言 我们在应用开发的时候,应该都碰到过这种需求:每天固定时间点跑一个任务;创建一些临时的任务去初始化数据或者做数据迁移;固定一个时间周期去轮询是否有新的状态发生;在java中有两个类可以帮我们处理这种需求,一个是java.util.TimerTask,一个是 java.util.concurrent.ScheduledExecutorService , 但是随着业务的发展,任务调度的需求会越来越多,对调度器的要求也会更高,例如能够监控任务的执行进度,能够根据应用负载动态路由选择更健康的执行器去执行任务,所以我们需要一个系统将调度器和执行器分离开,在调度系统中增加更多功能来辅助我们运维业务中的各种任务。 关键词解释 管理后台:一个后台管理系统,提供web页面供业务人员对任务参数和执行模式进行编辑,查看任务进度和任务结果 执行器:提供任务具体执行的环境,一般指代应用本身,应用本身作为一个执行器,内部可以有多个待执行的任务单元 任务单元:需要定时执行的任务单元,依赖具体业务场景,例如基金行业的日切任务计算每日收益 调度器:依托特定调度的算法,例如每日早上8点,每间隔5分钟等去唤醒执行器去执行指定的任务单元 我们可以思考一下

ZooKeeper原理及使用

冷暖自知 提交于 2020-01-19 06:19:54
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper提供的Client API的使用,第三部分介绍一些ZooKeeper典型的应用场景。 ZooKeeper基本原理 1. 数据模型 如上图所示,ZooKeeper数据模型的结构与Unix文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每个ZNode都可以通过其路径唯一标识,比如上图中第三层的第一个ZNode, 它的路径是/app1/c1。在每个ZNode上可存储少量数据(默认是1M, 可以通过配置修改, 通常不建议在ZNode上存储大量的数据),这个特性非常有用,在后面的典型应用场景中会介绍到。另外,每个ZNode上还存储了其Acl信息,这里需要注意,虽说ZNode的树形结构跟Unix文件系统很类似,但是其Acl与Unix文件系统是完全不同的,每个ZNode的Acl的独立的,子结点不会继承父结点的,关于ZooKeeper中的Acl可以参考之前写过的一篇文章《 说说Zookeeper中的ACL 》。 2.重要概念 2.1 ZNode 前文已介绍了ZNode,

ZooKeeper原理及使用

风流意气都作罢 提交于 2020-01-19 06:19:12
转:http://blog.csdn.net/xinguan1267/article/details/38422149 ZooKeeper是 Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper提供的Client API的使用,第三部分介绍一些ZooKeeper典型的应用场景。 ZooKeeper基本原理 1. 数据模型 如上图所示,ZooKeeper数据模型的结构与Unix文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每个ZNode都可以通过其路径唯一标识,比如上图中第三层的第一个ZNode, 它的路径是/app1/c1。在每个ZNode上可存储少量数据(默认是1M, 可以通过配置修改, 通常不建议在ZNode上存储大量的数据),这个特性非常有用,在后面的典型应用场景中会介绍到。另外,每个ZNode上还存储了其Acl信息,这里需要注意,虽说ZNode的树形结构跟Unix文件系统很类似,但是其Acl与Unix文件系统是完全不同的,每个ZNode的Acl的独立的,子结点不会继承父结点的

ZooKeeper原理及使用

本秂侑毒 提交于 2020-01-19 06:18:58
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper提供的Client API的使用,第三部分介绍一些ZooKeeper典型的应用场景。 ZooKeeper基本原理 1. 数据模型 如上图所示,ZooKeeper数据模型的结构与Unix文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每个ZNode都可以通过其路径唯一标识,比如上图中第三层的第一个ZNode, 它的路径是/app1/c1。在每个ZNode上可存储少量数据(默认是1M, 可以通过配置修改, 通常不建议在ZNode上存储大量的数据),这个特性非常有用,在后面的典型应用场景中会介绍到。另外,每个ZNode上还存储了其Acl信息,这里需要注意,虽说ZNode的树形结构跟Unix文件系统很类似,但是其Acl与Unix文件系统是完全不同的,每个ZNode的Acl的独立的,子结点不会继承父结点的,关于ZooKeeper中的Acl可以参考之前写过的一篇文章《 说说Zookeeper中的ACL 》。 2.重要概念 2.1 ZNode 前文已介绍了ZNode,

分布式CAP定理,为什么不能同时满足三个特性?

前提是你 提交于 2020-01-19 00:08:18
在弄清楚这个问题之前,我们先了解一下什么是分布式的CAP定理。 根据百度百科的定义,CAP定理又称CAP原则,指的是在一个分布式系统中,Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),最多只能同时三个特性中的两个,三者不可兼得。 一、CAP的定义 Consistency (一致性): “all nodes see the same data at the same time”,即更新操作成功并返回客户端后,所有节点在同一时间的数据完全一致,这就是分布式的一致性。一致性的问题在并发系统中不可避免,对于客户端来说,一致性指的是并发访问时更新过的数据如何获取的问题。从服务端来看,则是更新如何复制分布到整个系统,以保证数据最终一致。 Availability (可用性): 可用性指“Reads and writes always succeed”,即服务一直可用,而且是正常响应时间。好的可用性主要是指系统能够很好的为用户服务,不出现用户操作失败或者访问超时等用户体验不好的情况。 Partition Tolerance (分区容错性): 即分布式系统在遇到某节点或网络分区故障的时候,仍然能够对外提供满足一致性或可用性的服务。 分区容错性要求能够使应用虽然是一个分布式系统,而看上去却好像是在一个可以运转正常的整体

zookeeper分布式安装部署

断了今生、忘了曾经 提交于 2020-01-16 21:04:35
1、集群规划 在 hadoop105、hadoop106和hadoop107 三个节点上部署 Zookeeper 。 操作步骤如下: 2、解压安装 (1)上传zookeeper压缩包( zookeeper-3.4.5.tar.gz )到/ usr/local/hadoop 文件目录下 (2)解压zookeeper压缩包到/ usr/local/hadoop/module 文件目录下 [ root @hadoop105 hadoop ] # tar - zxvf zookeeper - 3.4 .5 . tar . gz - C / usr / local / hadoop / module / (3)同步/ usr/local/hadoop/module/zookeeper-3.4.5 目录内容到 hadoop106、hadoop107 [ root @hadoop105 module ] # scp - r zookeeper - 3.4 .5 / hadoop106 : / usr / local / hadoop / module / [ root @hadoop105 module ] # scp - r zookeeper - 3.4 .5 / hadoop107 : / usr / local / hadoop / module / 3、配置服务器编号 (1)在/