词嵌入的经典方法,六篇论文遍历Word2vec的另类应用
机器之心分析师网络 作者:王子嘉 编辑:Joni 在本文中,作者首先为读者普及了 word2vec 的基础知识,然后以六篇论文为示例详细介绍了当前研究如何利用经典 word2vec 进行拓展性研究。其中,作者重点介绍的部分是知识嵌入空间的生成过程,对于其完整应用感兴趣的读者可以参阅原论文。 随着深度学习的兴起,每个模型都需要一个输入,而我们现实生活中的对象(文字、图片)等等都不是数字,计算机无法处理。所以如何为每个任务确定一个合适的 “输入” 就变得尤其重要了,这个过程也被叫做表征学习。 word2vec 做的就是把文字变成对计算机有意义的输入,简单来说就是把这些东西映射到一个空间里,我们平时为了表示位置可能是三维空间,也就是 xyz,但是在图片啊、文本啊这种领域里,三维空间不太够,就可能去到另外一个 N 维空间,在这个空间里,就像三维空间里人的鼻子要跟嘴挨得近一样,我们也希望相似的东西在这个新的空间里也距离近,比如文本里的 “鼻子” 和“嘴”我们就也希望它们能挨得近一点,因为都属于五官,那么 “鼻子” 和“腿”就相对离得远一点。 顾名思义,word2vec 是把文字转换成计算机可以识别的输入,所以这个技术最开始应用、也是应用最多的地方就是自然语言处理领域(NLP)。其实在之前对于表征学习,我基于 ICLR 和 CVPR 做过两次 high