dft

fortran complex to real fftw issue

匿名 (未验证) 提交于 2019-12-03 02:38:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I am currently working on a project where I need to implement a fourier transform and an inverse transform. I was testing a program I modified from an online example; the print or write commands are normally for debugging purposes: program testit INCLUDE 'fftw3.f' double complex out!, in real in parameter (N=100) dimension in(N), out(N) integer*8 p,p2 integer i,j real x real fact write(*,*)"stuff in data" OPEN(UNIT=12, FILE="input.txt", ACTION="write", STATUS="replace") OPEN(UNIT=20, FILE="dftoutput.txt", ACTION="write", STATUS="replace") x

Diferences between DFT and FFT (magnitude) results

匿名 (未验证) 提交于 2019-12-03 02:34:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 由 翻译 强力驱动 问题: I aim to get the DFT of an image in OpenCV. Using dft function, I'm able to calculate it, and then paint it by calculating its magnitude (then, apply the log and finally normalize it in order to paint values between 0 and 1). My result is, for the following image, the result I show you (with swap in order to have lower frequencies in the center of the image): However, if I compare it to the result I obtain using other tools like Halcon , It seems incorrect to my since It seems to have really "high" values (the OpenCV DFT magnitude

OpenCV : homomorphic filter

匿名 (未验证) 提交于 2019-12-03 02:27:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: i want to use a homomorphic filter to work on underwater image. I tried to code it with the codes found on the internet but i have always a black image... I tried to normalized my result but didn't work. Here my functions : void HomomorphicFilter::butterworth_homomorphic_filter(Mat &dft_Filter, int D, int n, float high_h_v_TB, float low_h_v_TB) { Mat single(dft_Filter.rows, dft_Filter.cols, CV_32F); Point centre = Point(dft_Filter.rows/2, dft_Filter.cols/2); double radius; float upper = (high_h_v_TB * 0.01); float lower = (low_h_v_TB * 0.01)

离散傅里叶变换(DFT)(为了使用而学习的DFT)

匿名 (未验证) 提交于 2019-12-03 00:34:01
吐槽时光: 今天在学习OFDM的离散傅里叶变换时,突然一时想不起来DFT以及IDFT的公式,很是苦恼,甚至是万分痛苦,这究竟是为什么? 从本科就开始搞这些玩意,那时候看到连续的还算亲切,但到了离散的时候就觉得是天书一般,我甚至一度怀疑自己是不是智力真的不够用,为什么我学不会这玩意? 到了研究生阶段,一度为了查漏补缺,我也曾废寝忘食地总结过这方面的知识,查了好几个版本的书,做了一些笔记,但那时候都是用纸张记录,过了一段时间,学习其他东西不曾翻看,又经历搬实验室的一系列原因,笔记都没有了。(我承认我不喜欢去翻看那落上灰尘的纸张,往往当成废纸扔了。) 时间又过了许久,听报告时,又再度听到OFDM的字眼,真是出现的频率有点高,我曾还算认真的看过OFDM,所以听到这个名词时,会有些敏感,但又想不起来具体的过程了,恰好,我开通博客已经许久,这种记录方式,总不会让我说扔就扔吧,中途用到了IDFT,使用IDFT的这个过程,真的让我很难理解,然而在通信这个系列的博客中,我是决心搞懂的,还下了誓言,不然是小狗,哈哈,通信系列博客目录在此: Ŀ¼ ,在 用离散傅里叶变换实现OFDM 这个博文中,整理的不算很到位,我正在修改,争取通俗易懂,至少做到准确。 在 用离散傅里叶变换实现OFDM 这篇博文的润色上花了不少时间,这中间的一个歧途就是我强迫自己去理解DFT,IDFT的一些列知识,事实上

MOSSE跟踪算法源码解析

匿名 (未验证) 提交于 2019-12-03 00:19:01
MOSSE 算法源码简单解析 源码 如下: // This file ispart of the OpenCV project. // It is subject to the license terms in the LICENSEfile found in the top-level directory // of this distribution and athttp://opencv.org/license.html. // //[1] David S. Bolme et al. "Visual Object Trackingusing Adaptive Correlation Filters" // http://www.cs.colostate.edu/~draper/papers/bolme_cvpr10.pdf // // // credits: // Kun-Hsin Chen: for initial c++ code // Cracki: for the idea of only converting the usedpatch to gray // #include "opencv2/tracking.hpp" namespace cv { namespace tracking { struct DummyModel : TrackerModel {

How to Plot fft of ascii values in MATLAB? [closed]

空扰寡人 提交于 2019-12-02 13:33:39
I have a ascii file containing 2048 x and y value pairs. I just want to know how to plot fft of y in MATLAB. I am writing following MATLAB code but could not be able to find appropriate result. How can I do this? This is what I have tried: I = load('data1.asc'); for i = 1:2048 y = I(:,2); end plot(x) Fs = 40000; T = 1/Fs; L = 2000; NFFT = 2^nextpow2(L); Y = abs(fft(y,NFFT))/L; f = Fs/2*linspace(0,1,NFFT/2+1); figure, plot(f,2*abs(Y(1:NFFT/2+1))) axis([0 40000 0 40]) xlabel('Frequency (Hz)') ylabel('|Y(f)|') Instead of diving straight into MATLAB's FFT routine you should instead consider using

Why do image compression algorithms process the image by sub-blocks?

痞子三分冷 提交于 2019-12-02 03:00:30
问题 For instance, consider the DFT or DCT. Precisely, what would be the differences between an image transformed by sub-blocks, and an image transformed whole? Is the resulting file size smaller? Is the algorithm more efficient? Does the transformed image look different? Thanks. 回答1: They are designed so they can be implemented using parallel hardware. Each block is independent, and can be calculated on a different computing node, or shared out to as many nodes as you have. Also as noted in an

快速傅里叶变换

。_饼干妹妹 提交于 2019-12-02 00:13:24
一、功能 计算复序列的快速傅里叶变换。 二、方法简介 序列 \(x(n)(n=0,1,...,N-1)\) 的离散傅里叶变换定义为 \[ X(k)=\sum_{n=0}^{N-1}x(n)W_{N}^{nk}, \qquad k=0,1,...,N-11 \] 其中 \(W_{N}^{nk}=e^{-j\frac{2\pi nk}{N}}\) ,将序列 \(x(n)\) 按序号 \(n\) 的奇偶分成两组,即 \[ \left.\begin{matrix}\begin{align*}x_{1}(n)=&x(2n)\\ x_{2}(n)=&x(2n+1)\end{align*}\end{matrix}\right\} \qquad n=0,1,...,\frac{N}{2}-1 \] 因此, \(x(n)\) 的傅里叶变换可写成 \[ \begin{align*}X(k) &= \sum_{n=0}^{N/2-1}x(2n)W^{2nk}_{N} + \sum_{n=0}^{N/2-1}x(2n+1)W^{(2n+1)k}_{N}\\&= \sum_{n=0}^{N/2-1}x_{1}(n)W^{nk}_{N/2} + W_{N}^{k}\sum_{n=0}^{N/2-1}x_{2}(n)W^{nk}_{N/2}\end{align*} \] 由此可得 \(X(k)=X_{1}(k)

前后端时间戳和时间的转换

落花浮王杯 提交于 2019-12-01 23:35:28
import java.text.DateFormat; import java.text.ParseException; import java.text.SimpleDateFormat; import java.time.LocalDate; import java.time.temporal.ChronoUnit; import java.util.ArrayList; import java.util.Calendar; import java.util.Date; import java.util.GregorianCalendar; import java.util.List; import java.util.Locale; public class MyDateUtils { public static final String DATE_FORMAT_YYYYMM1 = "yyyyMM"; public static final String DATE_FORMAT_YYYYMMDD1 = "yyyyMMdd"; public static final String DATE_FORMAT_YYYYMMDDHHMMSS = "yyyy-MM-dd HH:mm:ss"; public static final String DATE_FORMAT

Why do image compression algorithms process the image by sub-blocks?

谁说我不能喝 提交于 2019-12-01 23:05:56
For instance, consider the DFT or DCT. Precisely, what would be the differences between an image transformed by sub-blocks, and an image transformed whole? Is the resulting file size smaller? Is the algorithm more efficient? Does the transformed image look different? Thanks. ctrl-alt-delor They are designed so they can be implemented using parallel hardware. Each block is independent, and can be calculated on a different computing node, or shared out to as many nodes as you have. Also as noted in an answer to Why JPEG compression processes image by 8x8 blocks? the computational complexity is