HZNU-ACM寒假集训Day7小结
背包问题 01背包 状态:f(i,j) 表示只能装前i个物品的情况下,容量为j的背包所能达到的最大总价值 状态转移方程: f(i,j)=max(f(i-1,j),f(i-1,j-w[i])+v[i]) 核心代码(滚动数组) 由于我们使用一维数组存储,则在求两个子问题时没有直接取出那么方便了,因为第i次循环可能覆盖第i-1次循环的结果 “相反,如果在执行第 i 次循环时,背包容量按照0..V的顺序遍历一遍,来检测第 i 件物品是否能放。此时在执行第i次循环 且 背包容量为v时,此时的f[v]存储的是 f[i - 1][v] ,但是,此时f[v-weight[i]]存储的是f[i][v-weight[i]]。 因为,v > v - weight[i],第i次循环中,执行背包容量为v时,容量为v - weight[i]的背包已经计算过,即f[v - weight[i]]中存储的是f[i][v - weight[i]]。即,对于01背包,按照增序枚举背包容量是不对的。” for (int i = 1; i <= n; i++) { for (int j = m; j >= w[i]; j--) { f[j] = max(f[j], f[j - w[i]] + v[i]); } } 但是,增序枚举会达到什么效果:它会 重复的装入某个物体 , 而且尽可能的多使价值增大 完全背包问题