How to apply numpy.linalg.norm to each row of a matrix?

匿名 (未验证) 提交于 2019-12-03 08:57:35

问题:

I have a 2D matrix and I want to take norm of each row. But when I use numpy.linalg.norm(X) directly, it takes the norm of the whole matrix.

I can take norm of each row by using a for loop and then taking norm of each X[i], but it takes a huge time since I have 30k rows.

Any suggestions to find a quicker way? Or is it possible to apply np.linalg.norm to each row of a matrix?

回答1:

Note that, as perimosocordiae shows, as of NumPy version 1.9, np.linalg.norm(x, axis=1) is the fastest way to compute the L2-norm.


If you are computing an L2-norm, you could compute it directly (using the axis=-1 argument to sum along rows):

np.sum(np.abs(x)**2,axis=-1)**(1./2) 

Lp-norms can be computed similarly of course.

It is considerably faster than np.apply_along_axis, though perhaps not as convenient:

In [48]: %timeit np.apply_along_axis(np.linalg.norm, 1, x) 1000 loops, best of 3: 208 us per loop  In [49]: %timeit np.sum(np.abs(x)**2,axis=-1)**(1./2) 100000 loops, best of 3: 18.3 us per loop 

Other ord forms of norm can be computed directly too (with similar speedups):

In [55]: %timeit np.apply_along_axis(lambda row:np.linalg.norm(row,ord=1), 1, x) 1000 loops, best of 3: 203 us per loop  In [54]: %timeit np.sum(abs(x), axis=-1) 100000 loops, best of 3: 10.9 us per loop 


回答2:

Resurrecting an old question due to a numpy update. As of the 1.9 release, numpy.linalg.norm now accepts an axis argument. [code, documentation]

This is the new fastest method in town:

In [10]: x = np.random.random((500,500))  In [11]: %timeit np.apply_along_axis(np.linalg.norm, 1, x) 10 loops, best of 3: 21 ms per loop  In [12]: %timeit np.sum(np.abs(x)**2,axis=-1)**(1./2) 100 loops, best of 3: 2.6 ms per loop  In [13]: %timeit np.linalg.norm(x, axis=1) 1000 loops, best of 3: 1.4 ms per loop 

And to prove it's calculating the same thing:

In [14]: np.allclose(np.linalg.norm(x, axis=1), np.sum(np.abs(x)**2,axis=-1)**(1./2)) Out[14]: True 


回答3:

Try the following:

In [16]: numpy.apply_along_axis(numpy.linalg.norm, 1, a) Out[16]: array([ 5.38516481,  1.41421356,  5.38516481]) 

where a is your 2D array.

The above computes the L2 norm. For a different norm, you could use something like:

In [22]: numpy.apply_along_axis(lambda row:numpy.linalg.norm(row,ord=1), 1, a) Out[22]: array([9, 2, 9]) 


回答4:

Much faster than the accepted answer is

numpy.sqrt(numpy.einsum('ij,ij->i', a, a)) 

Note the log-scale:


Code to reproduce the plot:

import numpy import perfplot   def sum_sqrt(a):     return numpy.sqrt(numpy.sum(numpy.abs(a)**2, axis=-1))   def apply_norm_along_axis(a):     return numpy.apply_along_axis(numpy.linalg.norm, 1, a)   def norm_axis(a):     return numpy.linalg.norm(a, axis=1)   def einsum_sqrt(a):     return numpy.sqrt(numpy.einsum('ij,ij->i', a, a))   perfplot.show(     setup=lambda n: numpy.random.rand(n, 3),     kernels=[sum_sqrt, apply_norm_along_axis, norm_axis, einsum_sqrt],     n_range=[2**k for k in range(15)],     logx=True,     logy=True,     xlabel='len(a)'     ) 


标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!