SolvePnPRansac位姿估计算法

匿名 (未验证) 提交于 2019-12-03 00:38:01

SolvePnPRansac是PnP位姿估计鲁棒算法的一种,下面是Opencv 接口函数的描述

/*  max 注释 *   函数功能:用ransac的方式求解PnP问题 * *   参数: *   [in]    _opoints                参考点在世界坐标系下的点集;float or double *   [in]    _ipoints                参考点在相机像平面的坐标;float or double *   [in]    _cameraMatrix           相机内参 *   [in]    _distCoeffs             相机畸变系数 *   [out]   _rvec                   旋转矩阵 *   [out]   _tvec                   平移向量 *   [in]    useExtrinsicGuess       若果求解PnP使用迭代算法,初始值可以使用猜测的初始值(true),也可以使用解析求解的结果作为初始值(false)。 *   [in]    iterationsCount         Ransac算法的迭代次数,这只是初始值,根据估计外点的概率,可以进一步缩小迭代次数;(此值函数内部是会不断改变的),所以一开始可以赋一个大的值。 *   [in]    reprojectionErrr        Ransac筛选内点和外点的距离阈值,这个根据估计内点的概率和每个点的均方差(假设误差按照高斯分布)可以计算出此阈值。 *   [in]    confidence              此值与计算采样(迭代)次数有关。此值代表从n个样本中取s个点,N次采样可以使s个点全为内点的概率。 *   [out]   _inliers                返回内点的序列。为矩阵形式 *   [in]    flags                   最小子集的计算模型; *                                                 SOLVEPNP_ITERATIVE(此方案,最小模型用的EPNP,内点选出之后用了一个迭代); *                                                 SOLVE_P3P(P3P只用在最小模型上,内点选出之后用了一个EPNP)       *                                                 SOLVE_AP3P(AP3P只用在最小模型上,内点选出之后用了一个EPNP) *                                                 SOLVE_EPnP(最小模型上&内点选出之后都采用了EPNP) *    返回值: *         成功返回true,失败返回false; */ bool solvePnPRansac(InputArray _opoints, InputArray _ipoints, 	InputArray _cameraMatrix, InputArray _distCoeffs, 	OutputArray _rvec, OutputArray _tvec, bool useExtrinsicGuess, 	int iterationsCount, float reprojectionError, double confidence, 	OutputArray _inliers, int flags)

下面是使用例程:

// 自己测试 p3p测位姿算法 #if 1 #include "test_precomp.hpp"  void generate3DPointCloud(std::vector<cv::Point3f>& points, cv::Point3f pmin = cv::Point3f(-1, -1, 5), cv::Point3f pmax = cv::Point3f(1, 1, 10)) { 	cv::RNG rng = cv::theRNG(); // fix the seed to use "fixed" input 3D points  	for (size_t i = 0; i < points.size(); i++) 	{ 		float _x = rng.uniform(pmin.x, pmax.x); 		float _y = rng.uniform(pmin.y, pmax.y); 		float _z = rng.uniform(pmin.z, pmax.z); 		points[i] = cv::Point3f(_x, _y, _z); 	} }  void generateCameraMatrix(cv::Mat& cameraMatrix, cv::RNG& rng) { 	const double fcMinVal = 1e-3; 	const double fcMaxVal = 100; 	cameraMatrix.create(3, 3, CV_64FC1); 	cameraMatrix.setTo(cv::Scalar(0)); 	cameraMatrix.at<double>(0, 0) = rng.uniform(fcMinVal, fcMaxVal); 	cameraMatrix.at<double>(1, 1) = rng.uniform(fcMinVal, fcMaxVal); 	cameraMatrix.at<double>(0, 2) = rng.uniform(fcMinVal, fcMaxVal); 	cameraMatrix.at<double>(1, 2) = rng.uniform(fcMinVal, fcMaxVal); 	cameraMatrix.at<double>(2, 2) = 1; }  void generateDistCoeffs(cv::Mat& distCoeffs, cv::RNG& rng) { 	distCoeffs = cv::Mat::zeros(4, 1, CV_64FC1); 	for (int i = 0; i < 3; i++) 		distCoeffs.at<double>(i, 0) = rng.uniform(0.0, 1.0e-6); }  void generatePose(cv::Mat& rvec, cv::Mat& tvec, cv::RNG& rng) { 	const double minVal = 1.0e-3; 	const double maxVal = 1.0; 	rvec.create(3, 1, CV_64FC1); 	tvec.create(3, 1, CV_64FC1); 	for (int i = 0; i < 3; i++) 	{ 		rvec.at<double>(i, 0) = rng.uniform(minVal, maxVal); 		tvec.at<double>(i, 0) = rng.uniform(minVal, maxVal / 10); 	} }   int main_p3p() { 	std::vector<cv::Point3f> points; 	points.resize(500); 	generate3DPointCloud(points);   	std::vector<cv::Mat> rvecs, tvecs; 	cv::Mat trueRvec, trueTvec; 	cv::Mat intrinsics, distCoeffs;  	generateCameraMatrix(intrinsics, cv::RNG());	 	generateDistCoeffs(distCoeffs, cv::RNG());  	generatePose(trueRvec, trueTvec, cv::RNG());  	std::vector<cv::Point3f> opoints; 	opoints = std::vector<cv::Point3f>(points.begin(), points.begin() + 3);  	std::vector<cv::Point2f> projectedPoints; 	projectedPoints.resize(opoints.size()); 	projectPoints(cv::Mat(opoints), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);  	std::cout << "intrinsics: " << intrinsics << std::endl; 	std::cout << "distcoeffs: " << distCoeffs << std::endl; 	std::cout << "trueRvec: " << trueRvec << std::endl; 	std::cout << "trueTvec: " << trueTvec << std::endl;  	std::cout << "oPoint: " << opoints << std::endl; 	std::cout << "projectedPoints: " << projectedPoints << std::endl;    	std::cout<<"result numbers A: :"<<solveP3P(opoints, projectedPoints, intrinsics, distCoeffs, rvecs, tvecs, cv::SOLVEPNP_AP3P)<<std::endl; 	//std::cout << "result numbers: :" << solveP3P(opoints, projectedPoints, intrinsics, distCoeffs, rvecs, tvecs, cv::SOLVEPNP_P3P) << std::endl;  	bool isTestSuccess = false; 	double error = DBL_MAX; 	for (unsigned int i = 0; i < rvecs.size() /*&& !isTestSuccess*/; ++i) 	{ 		double rvecDiff = cvtest::norm(rvecs[i], trueRvec, cv::NORM_L2); 		double tvecDiff = cvtest::norm(tvecs[i], trueTvec, cv::NORM_L2); 		isTestSuccess = rvecDiff < 1.0e-4 && tvecDiff < 1.0e-4; 		error = std::min(error, std::max(rvecDiff, tvecDiff)); 		std::cout << "i: " << i << std::endl; 		std::cout << "error: " << error << std::endl; 		std::cout << "rvec: " << rvecs[i] << std::endl;  	}  	system("pause"); 	return 0; } int main() { 	std::vector<cv::Point3f> points; 	points.resize(500); 	generate3DPointCloud(points);   	std::vector<cv::Mat> rvecs, tvecs; 	cv::Mat trueRvec, trueTvec; 	cv::Mat intrinsics, distCoeffs;  	generateCameraMatrix(intrinsics, cv::RNG()); 	generateDistCoeffs(distCoeffs, cv::RNG());  	generatePose(trueRvec, trueTvec, cv::RNG());  	std::vector<cv::Point3f> opoints; 	//opoints = std::vector<cv::Point3f>(points.begin(), points.begin() + 4); 	opoints = std::vector<cv::Point3f>(points.begin(), points.end());  	std::vector<cv::Point2f> projectedPoints; 	projectedPoints.resize(opoints.size()); 	projectPoints(cv::Mat(opoints), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);  	cv::RNG rng = cv::RNG(); 	for (size_t i = 0; i < projectedPoints.size(); i++) 	{ 		if (i % 100 == 0) 		{ 			projectedPoints[i] = projectedPoints[rng.uniform(0, (int)points.size() - 1)]; 		} 	}  	std::cout << "intrinsics: " << intrinsics << std::endl; 	std::cout << "distcoeffs: " << distCoeffs << std::endl; 	std::cout << "trueRvec: " << trueRvec << std::endl; 	std::cout << "trueTvec: " << trueTvec << std::endl;  	//std::cout << "oPoint: " << opoints << std::endl; 	//std::cout << "projectedPoints: " << projectedPoints << std::endl;    	//solveP3P(opoints, projectedPoints, intrinsics, distCoeffs, rvecs, tvecs, cv::SOLVEPNP_AP3P); 	cv::Mat rvec, tvec; 	solvePnP(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec, false,cv::SOLVEPNP_EPNP); 	  	std::cout << rvec <<"---" <<norm(rvec-trueRvec)<<std::endl; 	std::cout << tvec << std::endl;   	std::cout << "---------------Ransac--------------------"<< std::endl; 	solvePnPRansac(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec,false,100,2); 	std::cout << rvec << "---" << norm(rvec - trueRvec) << std::endl; 	std::cout << tvec << std::endl; 	system("pause"); }    #endif




标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!