HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

匿名 (未验证) 提交于 2019-12-02 23:57:01

给定\(n,m,p\),求
\[ \sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \]

思路:

由欧拉函数性质可得:\(x,y\)互质则\(\varphi(xy)=\varphi(x)\varphi(y)\)\(p\)是质数则\(\varphi(p^a)=(p-1)^{a-1}\)。因此,由上述两条性质,我们可以吧\(a,b\)质因数分解得到
\[ \begin{aligned} \sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p&=\sum_{a=1}^n\sum_{b=1}^m\frac{gcd(a,b)}{(p_1 - 1)(p_2-1)\dots (p_k-1)}\mod p\\ &=\sum_{a=1}^n\sum_{b=1}^m\frac{gcd(a,b)}{\varphi(gcd(a,b))}\mod p\\ &=\sum_{k}\sum_{k|d}\mu(\frac{d}{k})F(d)*k*inv[\varphi(k)] \mod p \end{aligned} \]
有点卡常。

#include<map> #include<set> #include<queue> #include<stack> #include<ctime> #include<cmath> #include<cstdio> #include<string> #include<vector> #include<cstring> #include<sstream> #include<iostream> #include<algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; const int maxn = 1e6 + 5; const int INF = 0x3f3f3f3f; const ull seed = 131; const ll MOD = 1000000007; using namespace std;  int mu[maxn], vis[maxn]; int prime[maxn], cnt, phi[maxn]; ll inv[maxn]; void init(int n){     for(int i = 0; i <= n; i++) vis[i] = mu[i] = 0;     cnt = 0;     mu[1] = 1;     phi[1] = 1;     for(int i = 2; i <= n; i++) {         if(!vis[i]){             prime[cnt++] = i;             mu[i] = -1;             phi[i] = i - 1;         }         for(int j = 0; j < cnt && prime[j] * i <= n; j++){             vis[prime[j] * i] = 1;             if(i % prime[j] == 0){                 phi[i * prime[j]] = phi[i] * prime[j];                 break;             }             mu[i * prime[j]] = -mu[i];             phi[i * prime[j]] = phi[i] * (prime[j] - 1);         }     } } void init2(int n, ll p){     inv[0] = inv[1] = 1;     for(int i = 2; i <= n; i++)         inv[i] = (p - p / i) * inv[p % i] % p; }  int main(){     init(1e6);     int T;     scanf("%d", &T);     while(T--){         ll n, m, p;         scanf("%lld%lld%lld", &n, &m, &p);         ll mm = min(n, m);         init2(mm, p);         ll ans = 0;         for(int k = 1; k <= mm; k++){             ll temp = 0;             for(int d = k; d <= mm; d += k){                 temp += 1LL * mu[d / k] * (n / d) * (m / d);             }             temp = temp * k % p * inv[phi[k]] % p;             ans = (ans + temp) % p;         }         ans = (ans + p) % p;         printf("%lld\n", ans);     }     return 0; } 
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!