直接插入排序的两种做法

匿名 (未验证) 提交于 2019-12-02 23:45:01

可能很多人不会留意到这个问题,今天恰好碰到了,然后来稍微讨论一下

直接插入排序应该是很多数据结构与算法书里第一个讲的排序算法,算法的描述是这样的:

把待排序列视作两段,一段是已排序列,一段是未排序列。每一趟排序时,为未排序列的首位在已排序列中进行查找(因为是直接插入排序,所以这里特指逐个比较)其合适的位置,然后将其插入(插入的过程中伴随着一系列元素的后移)。

当时没有想太多,直接写了个按文字描述的代码:

def InsertSort1(LIST):     for i in range(1,len(LIST)):#从1开始,将0元素视为已排序列         TEMP=LIST[i]#保存中间变量         for ii in range(0,i):             if LIST[ii]>TEMP:#从前往后逐次比较,如果出现比它大的元素,那么就说明他应该落在此位。此处未加等于号是为了保证排序稳定性                 for iii in range(i,ii,-1):#注意,从后往前位移元素                     LIST[iii]=LIST[iii-1]                 LIST[ii]=TEMP                 break     return LIST

后来在看的时候发现好像不太对劲,怎么嵌套了三层for,于是乎回忆起了这一段应该是从后往前进行比较的

def InsertSort2(LIST):     for i in range(1,len(LIST)):         TEMP=LIST[i]         flag=True         for ii in range(i-1,-1,-1):#从后往前进行逐次比较             if LIST[ii]>TEMP:                 LIST[ii+1]=LIST[ii]             else:                  LIST[ii+1]=TEMP                  flag=False                  break         if flag:             LIST[0]=TEMP     return LIST

这里使用了两个辅助变量,TEMP和flag

事实上很多书在写这一段的时候,用了另一种巧妙的方法,只是用了一个辅助变量,这里可以参阅其他文章,我当时写到这里的时候立刻就回忆起了书里把这个做法叫做哨兵,即数组的0元素不用来储存元素,作为temp使用,在需要flag的地方不需要使用flag,保持了操作的一致性。这其实并不是我们要讨论的重点。

乍一看,二方法只嵌套了两层for,是不是比一方法要好呢?

答案是否定的,其实这个问题用一个图就能很好的表达了:

InsertSort1() 的性能十分稳定,在图中,它逐次比较的“路程”和后续位移的“路程”加起来恰好就是前一段线长(+1)

而InsertSort2()的性能不是那么稳定,在图中,当待排元素在已排序列中合适的位置靠后时,它的性能无疑是更好(付出了更短的“路程”),而当待排元素靠前时,它的性能就变差了(付出了双倍,更长的“路程”)

其实两个做法都是符合插入排序思想的,平均性能一致,最好性能的情况下2好于1,最坏情况下1>2

老实说真没想到这个最初始的算法会藏着这么一个有趣的小秘密,也算是颇有收获了

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!