Python 数据分析:让你像写 Sql 语句一样,使用 Pandas 做数据分析

匿名 (未验证) 提交于 2019-12-02 22:51:30
import pandas as pd import numpy as np  url = ('https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/tips.csv') tips = pd.read_csv(url) output = tips.head()

Output:

   total_bill   tip     sex smoker  day    time  size 0       16.99  1.01  Female     No  Sun  Dinner     2 1       10.34  1.66    Male     No  Sun  Dinner     3 2       21.01  3.50    Male     No  Sun  Dinner     3 3       23.68  3.31    Male     No  Sun  Dinner     2 4       24.59  3.61  Female     No  Sun  Dinner     4

sql 语句: SELECT total_bill, tip, smoker, time FROM tips LIMIT 5;

output = tips[['total_bill', 'tip', 'smoker', 'time']].head(5)

Output:

   total_bill   tip smoker    time 0       16.99  1.01     No  Dinner 1       10.34  1.66     No  Dinner 2       21.01  3.50     No  Dinner 3       23.68  3.31     No  Dinner 4       24.59  3.61     No  Dinner

sql 语句: SELECT * FROM tips WHERE time = 'Dinner' LIMIT 5;

output = tips[tips['time'] == 'Dinner'].head(5) # 或者 output = tips.query("time == 'Dinner'").head(5)

Output:

   total_bill   tip     sex smoker  day    time  size 0       16.99  1.01  Female     No  Sun  Dinner     2 1       10.34  1.66    Male     No  Sun  Dinner     3 2       21.01  3.50    Male     No  Sun  Dinner     3 3       23.68  3.31    Male     No  Sun  Dinner     2 4       24.59  3.61  Female     No  Sun  Dinner     4

sql 语句:SELECT * FROM tips WHERE time = 'Dinner';

output = tips[(tips['time'] == 'Dinner')]

sql 语句:SELECT * FROM tips WHERE tip > 5.00;

output = tips[(tips['tip'] > 5.00)]

sql 语句:SELECT * FROM tips WHERE tip >= 5.00;

output = tips[(tips['size'] >= 5)]

sql 语句:SELECT * FROM tips WHERE tip <= 5.00;

output = tips[(tips['size'] <= 5)]

sql 语句:SELECT * FROM tips WHERE tip <> 5.00;

output = tips[(tips['size'] != 5)]

sql 语句:SELECT * FROM tips WHERE time = 'Dinner' AND tip > 5.00;

output = tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]

sql 语句:SELECT * FROM tips WHERE size >= 5 OR total_bill > 45;

output = tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]

sql 语句:SELECT * FROM tips WHERE not (size <> 5 AND size > 4);

output = df[-((df['size'] != 5) & (df['size'] > 4))]

这里重新定义一个包含 NaN 数据的 DataFrame

frame = pd.DataFrame({                         'col1': ['A', 'B', np.NaN, 'C', 'D'],                         'col2': ['F', np.NaN, 'G', 'H', 'I']                     }) output = frame

Output:

  col1 col2 0    A    F 1    B  NaN 2  NaN    G 3    C    H 4    D    I

sql 语句:SELECT * FROM frame WHERE col2 IS NULL;

output = frame[frame['col2'].isna()]

Output:

  col1 col2 1    B  NaN

sql 语句:SELECT * FROM frame WHERE col1 IS NOT NULL;

output = frame[frame['col1'].notna()]

Output:

  col1 col2 0    A    F 1    B  NaN 3    C    H 4    D    I

5.1 In

sql 语句:SELECT * FROM tips WHERE siez in (5, 6);

output = tips[tips['size'].isin([2, 5])]

5.2 Like

sql 语句:SELECT * FROM tips WHERE time like 'Din%';

output = tips[tips.time.str.contains('Din*')]

sql 语句:SELECT sex, count(*) FROM tips GROUP BY sex;

output = tips.groupby('sex').size()  # 获取相应的结果 output['Male'] output['Female']
output = tips.groupby('sex').count()  # 获取相应的结果 output['tip']['Female']
output = tips.groupby('sex')['total_bill'].count()  # 获取相应的结果 output['Male'] output['Female']

sql 语句:SELECT day, AVG(tip), COUNT(*) FROM tips GROUP BY day;

output = tips.groupby('day').agg({'tip': np.mean, 'day': np.size})  # 获取相应的结果 output['day']['Fri'] output['tip']['Fri']

sql 语句:SELECT smoker, day, COUNT(*), AVG(tip) FROM tips GROUP BY smoker, day;

output = tips.groupby(['smoker', 'day']).agg({'tip': [np.size, np.mean]})  # 获取相应的结果 output['tip']['size']['No']['Fri']

sql 语句:SELECT tip, count(distinct sex) FROM tips GROUP BY tip;

output = tips.groupby('tip').agg({'sex': pd.Series.nunique})

定义两个 DataFrame。

df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': np.random.randn(4)}) df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'], 'value': np.random.randn(4)})

sql 语句:SELECT * FROM df1 INNER JOIN df2 ON df1.key = df2.key;

output = pd.merge(df1, df2, on='key') # 或 indexed_df2 = df2.set_index('key') pd.merge(df1, indexed_df2, left_on='key', right_index=True)

sql 语句:SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1.key = df2.key;

output = pd.merge(df1, df2, on='key', how='left') # 或 output = df1.join(df2, on='key', how='left')

sql 语句:SELECT * FROM df1 RIGHT OUTER JOIN df2 ON df1.key = df2.key;

output = pd.merge(df1, df2, on='key', how='right')

sql 语句:SELECT * FROM df1 FULL OUTER JOIN df2 ON df1.key = df2.key;

output = pd.merge(df1, df2, on='key', how='outer')
df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'], 'rank': range(1, 4)}) df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'], 'rank': [1, 4, 5]})

sql 语句:SELECT city, rank FROM df1 UNION ALL SELECT city, rank FROM df2;

output = pd.concat([df1, df2])

sql 语句:SELECT city, rank FROM df1 UNION SELECT city, rank FROM df2;

output = pd.concat([df1, df2]).drop_duplicates()

sql 语句:SELECT DISTINCT sex FROM tips;

output = tips.drop_duplicates(subset=['sex'], keep='first', inplace=False)

sql 语句:SELECT total_bill AS total, sex AS xes FROM tips;

output = tips.rename(columns={'total_bill': 'total', 'sex': 'xes'}, inplace=False)

sql 语句:SELECT * FROM tips ORDER BY tip DESC LIMIT 10 OFFSET 5;

output = tips.nlargest(10 + 5, columns='tip').tail(10)

sql 语句:

SELECT * FROM (   SELECT     t.*,     ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn   FROM tips t ) WHERE rn < 3 ORDER BY day, rn;
output = tips.assign(rn=tips.sort_values(['total_bill'], ascending=False).\                      groupby(['day']).cumcount() + 1).\     query('rn < 3').\     sort_values(['day', 'rn'])

sql 语句:UPDATE tips SET tip = tip*2 WHERE tip < 2;

output = tips.loc[tips['tip'] < 2, 'tip'] *= 2

sql 语句:DELETE FROM tips WHERE tip > 9;

output = tips = tips.loc[tips['tip'] <= 9]
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!