I need to calculate the centroids of a set of spatial zones based on a separate population grid dataset. Grateful for a steer on how to achieve this for the example below.
Thanks in advance.
require(raster)
require(spdep)
require(maptools)
dat <- raster(volcano) # simulated population data
polys <- readShapePoly(system.file("etc/shapes/columbus.shp",package="spdep")[1])
# set consistent coordinate ref. systems and bounding boxes
proj4string(dat) <- proj4string(polys) <- CRS("+proj=longlat +datum=NAD27")
extent(dat) <- extent(polys)
# illustration plot
plot(dat, asp = TRUE)
plot(polys, add = TRUE)
Three steps:
First, find all the cells in each polygon, return a list of 2-column matrices with the cell number and the value:
require(plyr) # for llply, laply in a bit...
cell_value = extract(dat, polys,cellnumbers=TRUE)
head(cell_value[[1]])
cell value
[1,] 31 108
[2,] 32 108
[3,] 33 110
[4,] 92 110
[5,] 93 110
[6,] 94 111
Second, turn into a list of similar matrices but add the x and y coords:
cell_value_xy = llply(cell_value, function(x)cbind(x,xyFromCell(dat,x[,"cell"])))
head(cell_value_xy[[1]])
cell value x y
[1,] 31 108 8.581164 14.71973
[2,] 32 108 8.669893 14.71973
[3,] 33 110 8.758623 14.71973
[4,] 92 110 8.581164 14.67428
[5,] 93 110 8.669893 14.67428
[6,] 94 111 8.758623 14.67428
Third, compute the weighted mean coordinate. This neglects any edge effects and assumes all grid cells are the same size:
centr = laply(cell_value_xy, function(m){c(weighted.mean(m[,3],m[,2]), weighted.mean(m[,4],m[,2]))})
head(centr)
1 2
[1,] 8.816277 14.35309
[2,] 8.327463 14.02354
[3,] 8.993655 13.82518
[4,] 8.467312 13.71929
[5,] 9.011808 13.28719
[6,] 9.745000 13.47444
Now centr
is a 2-column matrix. In your example its very close to coordinates(polys)
so I'd make a contrived example with some extreme weights to make sure its working as expected.
Another alternative.
I like it for its compactness, but it will likely only make sense if you're fairly familiar with the full family of raster functions:
## Convert polygons to a raster layer
z <- rasterize(polys, dat)
## Compute weighted x and y coordinates within each rasterized region
xx <- zonal(init(dat, v="x")*dat, z) / zonal(dat,z)
yy <- zonal(init(dat, v="y")*dat, z) / zonal(dat,z)
## Combine results in a matrix
res <- cbind(xx[,2],yy[,2])
head(res)
# [,1] [,2]
# [1,] 8.816277 14.35309
# [2,] 8.327463 14.02354
# [3,] 8.993655 13.82518
# [4,] 8.467312 13.71929
# [5,] 9.011808 13.28719
# [6,] 9.745000 13.47444
The answers by Spacedman and Josh are really great, but I'd like to share two other alternatives which are relatively fast and simple.
library(data.table)
library(spatialEco)
library(raster)
library(rgdal)
using a data.table
approach:
# get centroids of raster data
data_points <- rasterToPoints(dat, spatial=TRUE)
# intersect with polygons
grid_centroids <- point.in.poly(data_points, polys)
# calculate weighted centroids
grid_centroids <- as.data.frame(grid_centroids)
w.centroids <- setDT(grid_centroids)[, lapply(.SD, weighted.mean, w=layer), by=POLYID, .SDcols=c('x','y')]
using wt.centroid{spatialEco}
:
# get a list of the ids from each polygon
poly_ids <- unique(grid_centroids@data$POLYID)
# use lapply to calculate the weighted centroids of each individual polygon
w.centroids.list <- lapply(poly_ids, function(i){wt.centroid( subset(grid_centroids, grid_centroids@data$POLYID ==i)
, 'layer', sp = TRUE)} )
My own less elegant solution below. Gives exactly the same results as Spacedman and Josh.
# raster to pixels
p = rasterToPoints(dat) %>% as.data.frame()
coordinates(p) = ~ x + y
crs(p) = crs(polys)
# overlay pixels on polygons
ol = over(p, polys) %>% mutate(pop = p$layer) %>% cbind(coordinates(p)) %>%
filter(COLUMBUS_ %in% polys$COLUMBUS_) %>% # i.e. a unique identifier
dplyr::select(x, y, pop, COLUMBUS_) %>% as_data_frame()
# weighted means of x/y values, by pop
pwcs = split(ol, ol$COLUMBUS_) %>% lapply(function(g){
data.frame(x = weighted.mean(g$x, g$pop), y = weighted.mean(g$y, g$pop))
}) %>% bind_rows() %>% as_data_frame()
来源:https://stackoverflow.com/questions/23613655/calculating-weighted-polygon-centroids-in-r