Reshaping wide to long with multiple values columns [duplicate]

Deadly 提交于 2019-11-26 11:45:52

reshape does this with the appropriate arguments.

varying lists the columns which exist in the wide format, but are split into multiple rows in the long format. v.names is the long format equivalents. Between the two, a mapping is created.

From ?reshape:

Also, guessing is not attempted if v.names is given explicitly. Notice that the order of variables in varying is like x.1,y.1,x.2,y.2.

Given these varying and v.names arguments, reshape is smart enough to see that I've specified that the index is before the dot here (i.e., order 1.x, 1.y, 2.x, 2.y). Note that the original data has the columns in this order, so we can specify varying=2:5 for this example data, but that is not safe in general.

Given the values of times and v.names, reshape splits the varying columns on a . character (the default sep argument) to create the columns in the output.

times specifies values that are to be used in the created var column, and v.names are pasted onto these values to get column names in the wide format for mapping to the result.

Finally, idvar is specified to be the sbj column, which identifies individual records in the wide format (thanks @thelatemail).

reshape(dw, direction='long', 
        varying=c('f1.avg', 'f1.sd', 'f2.avg', 'f2.sd'), 
        timevar='var',
        times=c('f1', 'f2'),
        v.names=c('avg', 'sd'),
        idvar='sbj')

##      sbj blabla var avg sd
## A.f1   A     bA  f1  10  6
## B.f1   B     bB  f1  12  5
## C.f1   C     bC  f1  20  7
## D.f1   D     bD  f1  22  8
## A.f2   A     bA  f2  50 10
## B.f2   B     bB  f2  70 11
## C.f2   C     bC  f2  20  8
## D.f2   D     bD  f2  22  9
Maiasaura

Another option using Hadley's new tidyr package.

library(tidyr)
library(dplyr)

dw <- read.table(header=T, text='
 sbj f1.avg f1.sd f2.avg f2.sd  blabla
   A   10    6     50     10      bA
   B   12    5     70     11      bB
   C   20    7     20     8       bC
   D   22    8     22     9       bD
 ')

dw %>% 
  gather(v, value, f1.avg:f2.sd) %>% 
  separate(v, c("var", "col")) %>% 
  arrange(sbj) %>% 
  spread(col, value)

This seems to do what you want except that the f is removed from elements in time.

reshape(dw, idvar = "sbj", varying = list(c(2,4),c(3,5)), v.names = c("ave", "sd"), direction = "long")

    sbj blabla time ave sd
A.1   A     bA    1  10  6
B.1   B     bB    1  12  5
C.1   C     bC    1  20  7
D.1   D     bD    1  22  8
A.2   A     bA    2  50 10
B.2   B     bB    2  70 11
C.2   C     bC    2  20  8
D.2   D     bD    2  22  9
akrun

melt from the >=1.9.6 version of data.table, does this by specifying the column index in measure.vars as a list.

 melt(setDT(dw), measure.vars=list(c(2,4), c(3,5)), 
     variable.name='var', value.name=c('avg', 'sd'))[, 
      var:= paste0('f',var)][order(sbj)]
#   sbj blabla var avg sd
#1:   A     bA  f1  10  6
#2:   A     bA  f2  50 10
#3:   B     bB  f1  12  5
#4:   B     bB  f2  70 11
#5:   C     bC  f1  20  7
#6:   C     bC  f2  20  8
#7:   D     bD  f1  22  8
#8:   D     bD  f2  22  9

Or you could use the new patterns function:

melt(setDT(dw), 
     measure = patterns("avg", "sd"),
     variable.name = 'var', value.name = c('avg', 'sd'))
#    sbj blabla var avg sd
# 1:   A     bA   1  10  6
# 2:   B     bB   1  12  5
# 3:   C     bC   1  20  7
# 4:   D     bD   1  22  8
# 5:   A     bA   2  50 10
# 6:   B     bB   2  70 11
# 7:   C     bC   2  20  8
# 8:   D     bD   2  22  9

To add to the options available here, you can also consider merged.stack from my "splitstackshape" package:

library(splitstackshape)
merged.stack(dw, var.stubs = c("avg", "sd"), sep = "var.stubs", atStart = FALSE)
#    sbj blabla .time_1 avg sd
# 1:   A     bA     f1.  10  6
# 2:   A     bA     f2.  50 10
# 3:   B     bB     f1.  12  5
# 4:   B     bB     f2.  70 11
# 5:   C     bC     f1.  20  7
# 6:   C     bC     f2.  20  8
# 7:   D     bD     f1.  22  8
# 8:   D     bD     f2.  22  9

You can also do a little more cleanup on the ".time_1" variable, like this.

merged.stack(dw, var.stubs = c("avg", "sd"), 
             sep = "var.stubs", atStart = FALSE)[, .time_1 := sub(
               ".", "", .time_1, fixed = TRUE)][]
#    sbj blabla .time_1 avg sd
# 1:   A     bA      f1  10  6
# 2:   A     bA      f2  50 10
# 3:   B     bB      f1  12  5
# 4:   B     bB      f2  70 11
# 5:   C     bC      f1  20  7
# 6:   C     bC      f2  20  8
# 7:   D     bD      f1  22  8
# 8:   D     bD      f2  22  9

You would note the use of the atStart = FALSE argument. This is because your names are in a little bit of a different order than reshape-related functions seem to like. In general, the "stub" is expected to come first, and then the "times", like this:

dw2 <- dw
setnames(dw2, gsub("(.*)\\.(.*)", "\\2.\\1", names(dw2)))
names(dw2)
# [1] "sbj"    "avg.f1" "sd.f1"  "avg.f2" "sd.f2"  "blabla"

If the names were in that format, then both base R's reshape and merged.stack benefit from more direct syntax:

merged.stack(dw2, var.stubs = c("avg", "sd"), sep = ".")
reshape(dw2, idvar = c("sbj", "blabla"), varying = 2:5, 
        sep = ".", direction = "long")
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!