spark graphx图计算

眉间皱痕 提交于 2019-11-30 03:32:33

一、使用graph做好友推荐

import org.apache.spark.graphx.{Edge, Graph, VertexId}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
//求共同好友
object CommendFriend {

  def main(args: Array[String]): Unit = {
    //创建入口
    val conf: SparkConf = new SparkConf().setAppName("CommendFriend").setMaster("local[*]")
    val sc: SparkContext = new SparkContext(conf)
    //点的集合
    //点
    val uv: RDD[(VertexId,(String,Int))] = sc.parallelize(Seq(
      (133, ("毕东旭", 58)),
      (1, ("贺咪咪", 18)),
      (2, ("范闯", 19)),
      (9, ("贾璐燕", 24)),
      (6, ("马彪", 23)),

      (138, ("刘国建", 40)),
      (16, ("李亚茹", 18)),
      (21, ("任伟", 25)),
      (44, ("张冲霄", 22)),

      (158, ("郭佳瑞", 22)),
      (5, ("申志宇", 22)),
      (7, ("卫国强", 22))
    ))
    //边的集合
    //边Edge
    val ue: RDD[Edge[Int]] = sc.parallelize(Seq(
      Edge(1, 133,0),
      Edge(2, 133,0),
      Edge(9, 133,0),
      Edge(6, 133,0),

      Edge(6, 138,0),
      Edge(16, 138,0),
      Edge(44, 138,0),
      Edge(21, 138,0),

      Edge(5, 158,0),
      Edge(7, 158,0)
    ))
    //构建图(连通图)
    val graph: Graph[(String, Int), Int] = Graph(uv,ue)
    //调用连通图算法
    graph
      .connectedComponents()
      .vertices
      .join(uv)
      .map{
        case (uid,(minid,(name,age)))=>(minid,(uid,name,age))
      }.groupByKey()
      .foreach(println(_))
    //关闭
  }
}

 

二、用户标签数据合并Demo

测试数据

陌上花开 旧事酒浓 多情汉子 APP爱奇艺:10 BS龙德广场:8

多情汉子 满心闯 K韩剧:20

满心闯 喜欢不是爱 不是唯一 APP爱奇艺:10

装逼卖萌无所不能 K欧莱雅面膜:5

计算结果数据

(-397860375,(List(喜欢不是爱, 不是唯一, 多情汉子, 多情汉子, 满心闯, 满心闯, 旧事酒浓, 陌上花开),List((APP爱奇艺,20), (K韩剧,20), (BS龙德广场,8))))

(553023549,(List(装逼卖萌无所不能),List((K欧莱雅面膜,5))))

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!