Plotting large arrays in pyqtgraph

笑着哭i 提交于 2019-11-29 22:40:12

See this discussion: https://groups.google.com/forum/?fromgroups#!searchin/pyqtgraph/arraytoqpath/pyqtgraph/CBLmhlKWnfo/jinNoI07OqkJ

Pyqtgraph does not redraw after every call to plot(); it will wait until control returns to the Qt event loop before redrawing. However, it is possible that your code forces the event loop to be visited more frequently by calling QApplication.processEvents() (this can happen indirectly e.g. if you have a progress dialog).

Generally, the most important rule about improving performance is: profile your code. Do not make assumptions about what might be slowing you down if you can instead measure that directly.

Since I don't have access to your code, I can only guess how to improve it and show you how profiling can help. I'm going to start with the 'slow' example here and work through a few improvements.

1. The slow implementation

import pyqtgraph as pg
import numpy as np
app = pg.mkQApp()
data = np.random.normal(size=(120,20000), scale=0.2) + \
       np.arange(120)[:,np.newaxis]
view = pg.GraphicsLayoutWidget()
view.show()
w1 = view.addPlot()
now = pg.ptime.time()
for n in data:
    w1.plot(n)
print "Plot time: %0.2f sec" % (pg.ptime.time()-now)
app.exec_()

The output of this is:

Plot time: 6.10 sec

Now let's profile it:

$ python -m cProfile -s cumulative speed_test.py
. . .
     ncalls  tottime  percall  cumtime  percall filename:lineno(function)
          1    0.001    0.001   11.705   11.705 speed_test.py:1(<module>)
        120    0.002    0.000    8.973    0.075 PlotItem.py:614(plot)
        120    0.011    0.000    8.521    0.071 PlotItem.py:500(addItem) 
    363/362    0.030    0.000    7.982    0.022 ViewBox.py:559(updateAutoRange)
. . .

Already we can see that ViewBox.updateAutoRange is taking a lot of time, so let's disable auto-ranging:

2. A bit faster

import pyqtgraph as pg
import numpy as np
app = pg.mkQApp()
data = np.random.normal(size=(120,20000), scale=0.2) + \
       np.arange(120)[:,np.newaxis]
view = pg.GraphicsLayoutWidget()
view.show()
w1 = view.addPlot()
w1.disableAutoRange()
now = pg.ptime.time()
for n in data:
    w1.plot(n)
w1.autoRange() # only after plots are added
print "Plot time: %0.2f sec" % (pg.ptime.time()-now)
app.exec_()

..and the output is:

Plot time: 0.68 sec

So that's a bit faster, but panning/scaling the plot is still quite slow. If I look at the profile after dragging the plot for a while, it looks like this:

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.034    0.034   16.627   16.627 speed_test.py:1(<module>)
        1    1.575    1.575   11.627   11.627 {built-in method exec_}
       20    0.000    0.000    7.426    0.371 GraphicsView.py:147(paintEvent)
       20    0.124    0.006    7.425    0.371 {paintEvent}
     2145    0.076    0.000    6.996    0.003 PlotCurveItem.py:369(paint)

So we see a lot of calls to PlotCurveItem.paint(). What if we put all 120 plot lines into a single item to reduce the number of paint calls?

3. The fast implementation

After a couple rounds of profiling, I came up with this. It's based on using pg.arrayToQPath, as suggested in the thread above:

import pyqtgraph as pg
import numpy as np
app = pg.mkQApp()

y = np.random.normal(size=(120,20000), scale=0.2) + np.arange(120)[:,np.newaxis]
x = np.empty((120,20000))
x[:] = np.arange(20000)[np.newaxis,:]
view = pg.GraphicsLayoutWidget()
view.show()
w1 = view.addPlot()

class MultiLine(pg.QtGui.QGraphicsPathItem):
    def __init__(self, x, y):
        """x and y are 2D arrays of shape (Nplots, Nsamples)"""
        connect = np.ones(x.shape, dtype=bool)
        connect[:,-1] = 0 # don't draw the segment between each trace
        self.path = pg.arrayToQPath(x.flatten(), y.flatten(), connect.flatten())
        pg.QtGui.QGraphicsPathItem.__init__(self, self.path)
        self.setPen(pg.mkPen('w'))
    def shape(self): # override because QGraphicsPathItem.shape is too expensive.
        return pg.QtGui.QGraphicsItem.shape(self)
    def boundingRect(self):
        return self.path.boundingRect()

now = pg.ptime.time()
lines = MultiLine(x, y)
w1.addItem(lines)
print "Plot time: %0.2f sec" % (pg.ptime.time()-now)

app.exec_()

It starts quickly and panning/scaling is reasonably responsive. I'll stress, though, that whether this solution works for you will likely depend on the details of your program.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!