第十二章 Java内存模型与线程

▼魔方 西西 提交于 2019-11-29 19:11:47

概述

并发应用场景:①充分利用计算机处理器的能力;②一个服务端同时为多个客户端提供服务。
衡量一个服务性能的高低好坏,每秒事务处理数是最重要的指标之一。

硬件的效率与一致性

Java内存模型

  1. 主内存和工作内存
    ①Java内存模型的主要目标是定义程序中各个变量的访问规则 – 虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节。此处的变量(Variables)包括了实例字段、静态字段和构成数组对象的元素,但不包括局部变量与方法参数,因为后者是线程私有的,不会被共享,自然就不会存在竞争问题。
    ②Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器进行调整代码执行顺序这类优化措施。
    ③Java内存模型规定了所有的变量都存储在主内存(Main Memory,类比物理内存)。每条线程还有自己的工作内存(Working Memory,类比处理器高速缓存),线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝。线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,而不能直接读写主内存中的变量。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,线程、主内存、工作内存三者的交互关系如图所示。
  2. 内存间相互操作
    一个变量如何从主内存拷贝到工作内存、如何从工作内存同步回主内存之类的实现细节,Java内存模型中定义了以下8种操作来完成,虚拟机实现时必须保证下面提及的每一种操作都是原子的、 不可再分的。
    ①lock(锁定):作用于主内存的变量,它把一个变量标识为一条线程独占的状态。
    ②unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
    ③read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。
    ④write(写入):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。
    ⑤store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用。(store后write)
    ⑥load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。(read以后load)
    ⑦use(使用):作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用到变量的值的字节码指令时将会执行这个操作。
    ⑧assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。

如果要把一个变量从主内存复制到工作内存,那就要顺序地执行read和load操作,如果要把变量从工作内存同步回主内存,就要顺序地执行store和write操作。注意,Java内存模型只要求上述两个操作必须按顺序执行,而没有保证是连续执行。也就是说,read与load之间、store与write之间是可插入其他指令的,如对主内存中的变量a、 b进行访问时,一种可能出现顺序是read a、 read b、 load b、 load a。
Java内存模型还规定了在执行上述8种基本操作时必须满足如下规则:
①不允许read和load、store和write操作之一单独出现,即不允许一个变量从主内存读取了但工作内存不接受,或者从工作内存发起回写了但主内存不接受的情况出现。
②不允许一个线程丢弃它的最近的assign操作,即变量在工作内存中改变了之后必须把该变化同步回主内存。
③不允许一个线程无原因地(没有发生过任何assign操作)把数据从线程的工作内存同步回主内存中。
④一个新的变量只能在主内存中“诞生”,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量,换句话说,就是对一个变量实施use、store操作之前,必须先执行过了load和assign操作
⑤一个变量在同一个时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。
⑥如果对一个变量执行lock操作,那将会清空工作内存中此变量的值,在执行引擎使用这个变量前,需要重新执行load或assign操作初始化变量的值。
⑦如果一个变量事先没有被lock操作锁定,那就不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定住的变量。
⑧对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、 write操作)。

  1. 对于volatile型变量的特殊规则
    关键字volatile可以说是Java虚拟机提供的最轻量级的同步机制;Java内存模型对volatile专门定义了一些特殊的访问规则,一个变量定义为volatile之后,它将具备两种特性:可见性,禁止指令重排序优化
    ①可见性:保证此变量对所有线程的可见性,这里的“可见性”是指当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的。而普通变量不能做到这一点,普通变量的值在线程间传递均需要通过主内存来完成 – 线程A修改一个普通变量的值,然后向主内存进行回写,另外一条线程B在线程A回写完成了之后再从主内存进行读取操作,新变量值才会对线程B可见。针对 volatile变量的可见性的误解,Java里面的运算并非原子操作,导致volatile变量的运算在并发下一样是不安全的
    ②禁止指令重排序优化:普通的变量仅仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致。因为在一个线程的方法执行过程中无法感知到这点,这也就是Java内存模型中描述的所谓的“线程内表现为串行的语义”。
# 如果定义initialized变量时没有使用volatile修饰,就可能会由于指令重排序的优化,导致位于线程A中最后一句的代码“initialized=true”被提前执行(提前执行是指这句话对应的汇编代码被提前执行),这样在线程B中使用配置信息的代码就可能出现错误,而volatile关键字则可以避免此类情况的发生。

Map configOptions;
char[] configText;
//此变量必须定义为volatile
volatile boolean initialized = false;
//假设以下代码在线程A中执行
//模拟读取配置信息,当读取完成后将initialized设置为true以通知其他线程配置可用
configOptions=new HashMap();
configText=readConfigFile(fileName);
processConfigOptions(configText,configOptions);
initialized = true;
//假设以下代码在线程B中执行
//等待initialized为true,代表线程A已经把配置信息初始化完成
while(!initialized){
sleep();
}//使用线程A中初始化好的配置信息
doSomethingWithConfig();
  1. 对于long和double型变量的特殊规则
    Java内存模型要求lock、unlock、read、load、assign、use、store、write这8个操作都具有原子性,但是对于64位的数据类型(long和double),在模型中特别定义了一条相对宽松的规定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行,即允许虚拟机实现选择可以不保证64位数据类型的load、store、read和write这4个操作的原子性,这点就是所谓的long和double的非原子性协定。如果有多个线程共享一个并未声明为volatile的long或double类型的变量,并且同时对它们进行读取和修改操作,那么某些线程可能会读取到一个既非原值,也不是其他线程修改值的代表了“半个变量”的数值。但是这种情况基本不可能。

  2. 原子性、 可见性与有序性
    Java内存模型是围绕着在并发过程中如何处理原子性、 可见性和有序性这3个特征来建立的。synchronized关键字在需要这3种特性的时候都可以作为其中一种的解决方案?大部分的并发控制操作都能使用synchronized来完成。
    ①原子性:由Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write,我们大致可以认为基本数据类型的访问读写是具备原子性的。(float, double不视为特例)。如果应用场景需要一个更大范围的原子性保证,Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作,这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。
    ②可见性:可见性是指当一个线程修改了共享变量的值,其他线程能够立即得知这个修改。Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此,普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此,可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。除了volatile之外,Java还有两个关键字能实现可见性,即synchronized和final。同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的,而final关键字的可见性是指:被final修饰的字段在构造器中一旦初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那在其他线程中就能看见final字段的值。
    ③有序性:Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这条规则决定了持有同一个锁的两个同步块只能串行地进入。

  3. 先行发生原则
    先行发生是Java内存模型中定义的两项操作之间的偏序关系,如果说操作A先行发生于操作B,其实就是说在发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、 发送了消息、 调用了方法等。Java内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。 如果两个操作之间的关系不在此列,并且无法从下列规则推导出来的话,它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序。
    ①程序次序规则(Program Order Rule):在一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作。准确地说,应该是控制流顺序而不是程序代码顺序,因为要考虑分支、 循环等结构。
    ②管程锁定规则(Monitor Lock Rule):一个unlock操作先行发生于后面对同一个锁的lock操作。 这里必须强调的是同一个锁,而“后面”是指时间上的先后顺序。
    ③volatile变量规则(Volatile Variable Rule):对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后顺序。
    ④线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作。
    ⑤线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread.join()方法结束、 Thread.isAlive()的返回值等手段检测到线程已经终止执行。
    ⑥线程中断规则(Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread.interrupted()方法检测到是否有中断发生。
    ⑦对象终结规则(Finalizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。
    ⑧传递性(Transitivity):如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。

private int value = 0;

    public void setValue(int value) {
        this.value = value;
    }

    public int getValue() {
        return value;
}
# 线程A先调用set方法,然后线程B调用get方法;那么线程B获得的值?
# 先行发生原则中的各项规则,由于两个方法分别由线程A和线程B调用,不在一个线程中,所以程序次序规则在这里不适用;由于没有同步块,自然就不会发生lock和unlock操作,所以管程锁定规则不适用;由于value变量没有被volatile关键字修饰,所以volatile变量规则不适用;后面的线程启动、终止、中断规则和对象终结规则也和这里完全没有关系。因为没有一个适用的先行发生规则,所以最后一条传递性也无从谈起,因此我们可以判定尽管线程A在操作时间上先于线程B,但是无法确定线程B中"getValue()"方法的返回结果,换句话说,这里面的操作不是线程安全的。
# fixed it: 1. 把getter/setter方法都定义为synchronized方法,这样就可以套用管程锁定规则;2.把value定义为volatile变量,由于setter方法对value的修改不依赖value的原值,满足volatile关键字使用场景,这样就可以套用volatile变量规则来实现先行发生关系。

一个操作“时间上的先发生”不代表这个操作会是“先行发生”,一个操作“先行发生”也不能推导出这个操作必定是“时间上的先发生” – “指令重排”。两者之间没有必然的联系。衡量并发安全问题的时候不要受到时间顺序的干扰,一切必须以先行发生原则为准。

Java与线程

  1. 线程的实现
    线程是比进程更轻量级的调度执行单位,线程的引入,可以把一个进程的资源分配和执行调度分开,各个线程既可以共享进程资源(内存地址、文件I/O等),又可以独立调度(线程是CPU调度的基本单位)。Java中每个已经执行start()且还未结束的java.lang.Thread类的实例就代表了一个线程。Thread类的所有关键方法都是声明为Native的(没法使用平台无关的方式实现)。实现线程主要有3种方式:使用内核线程实现、使用用户线程实现和使用用户线程加轻量级进程混合实现。
    ①使用内核线程实现:内核线程(Kernel-Level Thread,KLT)就是直接由操作系统内核(Kernel,下称内核)支持的线程,这种线程由内核来完成线程切换,内核通过操纵调度器(Scheduler)对线程进行调度,并负责将线程的任务映射到各个处理器上。程序一般使用内核线程的一种高级接口——轻量级进程(Light Weight Process,LWP),轻量级进程就是我们通常意义上所讲的线程,每个轻量级进程都由一个内核线程支持。轻量级进程具有它的局限性:首先,由于是基于内核线程实现的,所以各种线程操作,如创建、析构及同步,都需要进行系统调用。 而系统调用的代价相对较高,需要在用户态(User Mode)和内核态(KernelMode)中来回切换。其次,每个轻量级进程都需要有一个内核线程的支持,因此轻量级进程要消耗一定的内核资源(如内核线程的栈空间),因此一个系统支持轻量级进程的数量有限。好处就是由于内核线程的支持,每个轻量级进程都成为一个独立的调度单元。

    ②使用用户线程实现:狭义上的用户线程指的是完全建立在用户空间的线程库上,系统内核不能感知线程存在的实现。用户线程的建立、 同步、 销毁和调度完全在用户态中完成,不需要内核的帮助。如果程序实现得当,这种线程不需要切换到内核态,因此操作可以是非常快速且低消耗的,也可以支持规模更大的线程数量,部分高性能数据库中的多线程就是由用户线程实现的。这种进程与用户线程之间1:N的关系称为一对多的线程模型。用户线程的优势在于不需要系统内核支援,劣势也在于没有系统内核的支援,所有的线程操作都需要用户程序自己处理。 线程的创建、切换和调度都是需要考虑的问题,而且由于操作系统只把处理器资源分配到进程,那诸如“阻塞如何处理”、“多处理器系统中如何将线程映射到其他处理器上”这类问题解决起来将会异常困难,甚至不可能完成。Java、Ruby等语言都曾经使用过用户线程,最终又都放弃使用它。
    在这里插入图片描述
    ③使用用户线程加轻量级进程混合实现:将内核线程与用户线程一起使用的实现方式。在这种混合实现下,既存在用户线程,也存在轻量级进程。 用户线程还是完全建立在用户空间中,因此用户线程的创建、切换、析构等操作依然廉价,并且可以支持大规模的用户线程并发。而操作系统提供支持的轻量级进程则作为用户线程和内核线程之间的桥梁,这样可以使用内核提供的线程调度功能及处理器映射,并且用户线程的系统调用要通过轻量级线程来完成,大大降低了整个进程被完全阻塞的风险。在这种混合模式中,用户线程与轻量级进程的数量比是不定的,即为N:M的关系。

  2. Java线程调度
    线程调度是指系统为线程分配处理器使用权的过程,主要调度方式有两种,分别是协同式线程调度(Cooperative Threads-Scheduling)和抢占式线程调度(Preemptive ThreadsScheduling)。
    ①协同式调度: 线程的执行时间由线程本身来控制,线程把自己的工作执行完了之后,要主动通知系统切换到另外一个线程上。优点是实现简单,而且由于线程要把自己的事情干完后才会进行线程切换,切换操作对线程自己是可知的,所以没有什么线程同步的问题。缺点:线程执行时间不可控制,甚至如果一个线程编写有问题,一直不告知系统进行线程切换,那么程序就会一直阻塞在那里。
    ②抢占式调度:线程将由系统来分配执行时间,线程的切换不由线程本身来决定(在Java中,Thread.yield()可以让出执行时间,但是要获取执行时间的话,线程本身是没有什么办法的)。在这种实现线程调度的方式下,线程的执行时间是系统可控的,也不会有一个线程导致整个进程阻塞的问题,Java使用的线程调度方式就是抢占式调度。

  3. 状态转换
    Java语言定义了6种线程状态,在任意一个时间点,一个线程只能有且只有其中的一种状态:
    ①新建(New):创建后尚未启动的线程处于这种状态。
    ②运行(Runable):Runable包括了操作系统线程状态中的Running和Ready,也就是处于此状态的线程有可能正在执行,也有可能正在等待着CPU为它分配执行时间。
    ③无限期等待(Waiting):处于这种状态的线程不会被分配CPU执行时间,它们要等待被其他线程显式地唤醒。 以下方法会让线程陷入无限期的等待状态: 没有设置Timeout参数的Object.wait()方法;没有设置Timeout参数的Thread.join()方法;LockSupport.park()方法。
    ④限期等待(Timed Waiting):处于这种状态的线程也不会被分配CPU执行时间,不过无须等待被其他线程显式地唤醒,在一定时间之后它们会由系统自动唤醒。以下方法会让线程进入限期等待状态: Thread.sleep()方法;设置了Timeout参数的Object.wait()方法;设置了Timeout参数的Thread.join()方法;LockSupport.parkNanos()方法;LockSupport.parkUntil()方法。
    ⑤阻塞(Blocked):线程被阻塞了,“阻塞状态”与“等待状态”的区别是:“阻塞状态”在等待着获取到一个排他锁,这个事件将在另外一个线程放弃这个锁的时候发生;而“等待状态”则是在等待一段时间,或者唤醒动作的发生。 在程序等待进入同步区域的时候,线程将进入这种状态。
    ⑥结束(Terminated):已终止线程的线程状态,线程已经结束执行。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!