function [best_solution,best_fit,iter] = mySa(solution,a,t0,tf,Markov) % 模拟退化算法 % ===== 输入 ======% % solution 初始解 % a 温度衰减系数 0.99 % t0 初始温度 120 % tf 最终温度 1 % Markov 马尔科夫链长度 10000 % ====== 输出 =====% % best_solution 最优解 % best_fit 最优解目标值 % iter 迭代次数 n = length(solution); t = t0; solution_new = solution; % 初始解赋给最新的解 best_fit = Inf; % 初始化最优适应度(最差的适应度) fit = Inf; % 初始化当前的适应度 best_solution = solution; % 最优解 iter = 1; % -----------------------迭代过程------------------------------------% while t >= tf for j = 1:Markov % -----------------------产生新解过程------------------------------------% %进行扰动,产生新的序列solution_new; if (rand < 0.7) % 概率小于0.7 采取交换两个数位置的方式产生新解 ind1 = 0; ind2 = 0; while(ind1 == ind2 && ind1 >= ind2) ind1 = ceil(rand*n); ind2 = ceil(rand*n); end temp = solution_new(ind1); solution_new(ind1) = solution_new(ind2); solution_new(ind2) = temp; else % 概率大于等于0.7 采取成组交换连续三个数位置的方式产生新解 ind = zeros(3,1); L_ind = length(unique(ind)); while (L_ind < 3) ind = ceil([rand*n rand*n rand*n]); L_ind = length(unique(ind)); end ind0 = sort(ind); a1 = ind0(1); b1 = ind0(2); c1 = ind0(3); solution0 = solution_new; solution0(a1:a1+c1-b1-1) = solution_new(b1+1:c1); solution0(a1+c1-b1:c1) = solution_new(a1:b1); solution_new = solution0; end % -----------------------计算适应度过程------------------------------------ % %计算适应度fit_new fit_new = myFitCal(solution_new,D); % -----------------------解的更新过程------------------------------------ % if fit_new < fit fit = fit_new; solution = solution_new; %对最优路线和距离更新 if fit_new < best_fit iter = iter + 1; best_fit = fit_new; best_solution = solution_new; end else if rand < exp(-(fit_new-fit)/t) solution = solution_new; fit = fit_new; end end solution_new = solution; end t = t*a; %降温 end
来源:https://www.cnblogs.com/gshang/p/11515394.html