Using melt with matrix or data.frame gives different output

こ雲淡風輕ζ 提交于 2019-11-29 07:04:57

The basic reason is that there are different methods for melt, which you can see by running methods("melt"). Most of these can be accessed by, say, reshape2:::melt.matrix or reshape2:::melt.data.frame, which can send you on your hunt for figuring out exactly why the results are different.

But, to summarize what you will find, basically, melt.matrix will end up doing something like:

cbind(expand.grid(dimnames(M)), value = as.vector(M))
#   Var1 Var2      value
# 1    A    A -0.6264538
# 2    B    A  0.1836433
# 3    C    A -0.8356286
# 4    A    B  1.5952808
# 5    B    B  0.3295078
# 6    C    B -0.8204684
# 7    A    C  0.4874291
# 8    B    C  0.7383247
# 9    C    C  0.5757814

... while melt.data.frame will end up doing something like this:

N <- data.frame(M)
data.frame(var1 = rep(names(N), each = nrow(N)), value = unlist(unname(N)))
#   var1      value
# 1    A -0.6264538
# 2    A  0.1836433
# 3    A -0.8356286
# 4    B  1.5952808
# 5    B  0.3295078
# 6    B -0.8204684
# 7    C  0.4874291
# 8    C  0.7383247
# 9    C  0.5757814

Of course, the actual functions do a lot more error checking and are designed to let you conveniently specify which columns should be melted and so on.

Note that the data.frame method doesn't make use of the rownames, so as mentioned in the comments, to get the same result with the data.frame method, you'll have to add them in to the melt command.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!