Kubeflow是一个面向Kubernetes集群运行的机器学习框架。要想使用得先想办法把镜像搬到自己的环境里来。
目前版本0.3.3的容器镜像已经搬回来,可以使用下面的脚本来从Aliyun的镜像服务站下载:
- Kubeflow系统容器镜像(0.3.3):
echo ""
echo "================================================================="
echo "Pull kubeflow images for system from aliyun.com ..."
echo "This tools created by openthings, NO WARANTY. 2018.11.28."
echo "================================================================="
MY_REGISTRY=registry.cn-hangzhou.aliyuncs.com/openthings
echo ""
echo "1. centraldashboard"
docker pull ${MY_REGISTRY}/kubeflow-images-public-centraldashboard:v0.2.1
docker tag ${MY_REGISTRY}/kubeflow-images-public-centraldashboard:v0.2.1 gcr.io/kubeflow-images-public/centraldashboard:v0.2.1
echo ""
echo "2. jupyterhub-k8s"
docker pull ${MY_REGISTRY}/kubeflow-jupyterhub-k8s:v20180531-3bb991b1
docker tag ${MY_REGISTRY}/kubeflow-jupyterhub-k8s:v20180531-3bb991b1 gcr.io/kubeflow/jupyterhub-k8s:v20180531-3bb991b1
echo ""
echo "3. tf_operator"
docker pull ${MY_REGISTRY}/kubeflow-images-public-tf_operator:v0.2.0
docker tag ${MY_REGISTRY}/kubeflow-images-public-tf_operator:v0.2.0 gcr.io/kubeflow-images-public/tf_operator:v0.2.0
echo ""
echo "4. ambassador"
docker pull ${MY_REGISTRY}/quay-io-datawire-ambassador:0.30.1
docker tag ${MY_REGISTRY}/quay-io-datawire-ambassador:0.30.1 quay.io/datawire/ambassador:0.30.1
echo ""
echo "5. redis"
docker pull ${MY_REGISTRY}/redis:4.0.1
docker tag ${MY_REGISTRY}/redis:4.0.1 redis:4.0.1
echo ""
echo "6. seldonio/cluster-manager"
docker pull ${MY_REGISTRY}/seldonio-cluster-manager:0.1.6
docker tag ${MY_REGISTRY}/seldonio-cluster-manager:0.1.6 seldonio/cluster-manager:0.1.6
echo ""
echo "Finished."
echo ""
- TensorFlow机器学习引擎容器镜像(1.12.0):
## 添加Tag for registry.cn-hangzhou.aliyuncs.com/openthings
MY_REGISTRY=registry.cn-hangzhou.aliyuncs.com/openthings
MY_IMAGE_CPU=tensorflow-1.12.0-notebook-cpu:v-base-76107ff-897
MY_IMAGE_GPU=tensorflow-1.12.0-notebook-gpu:v-base-76107ff-897
## Push镜像
## Tag to original docker iamges name.
echo ""
echo "1. tensorflow-1.12.0-notebook-cpu"
echo "PULL: ${MY_REGISTRY}/kubeflow-images-public-${MY_IMAGE_CPU}"
docker pull ${MY_REGISTRY}/kubeflow-images-public-${MY_IMAGE_CPU}
docker tag ${MY_REGISTRY}/kubeflow-images-public-${MY_IMAGE_CPU} gcr.io/kubeflow-images-public/${MY_IMAGE_CPU}
echo ""
echo "2. tensorflow-1.12.0-notebook-gpu"
echo "PULL: ${MY_REGISTRY}/kubeflow-images-public-${MY_IMAGE_GPU}"
docker pull ${MY_REGISTRY}/kubeflow-images-public-${MY_IMAGE_GPU}
docker tag ${MY_REGISTRY}/kubeflow-images-public-${MY_IMAGE_GPU} gcr.io/kubeflow-images-public/${MY_IMAGE_GPU}
echo ""
echo "FINISHED."
echo ""
- 如果想自己学习当一回搬运工,请参考:
更多的参考:
- Kubeflow-机器学习工作流框架
- Kubeflow 使用指南
- Kubeflow 快速入门
- Kubeflow 入门——为 Kubernetes 打造的组件化、可移植、可扩展的机器学习堆栈
- PyTorch支持Kubernetes集群
- 为JupyterHub自定义Notebook Images
- 基于Kubernetes的机器学习系统
- Kubernetes集成TensorFlow服务
- Spark机器学习工具链-MLflow简介
来源:oschina
链接:https://my.oschina.net/u/2306127/blog/2962269