频率域滤波实际上是将图像进行傅里叶变换,然后在变换域进行处理,然后进行傅里叶反变换转换回空间域,原理是用傅里叶变换表示的函数特征完全可以通过傅里叶反变换来重建,而且不会丢失任何信息(因为任何周期或非周期函数都可以表示为不同频率的正弦函数和余弦函数之和的形式)。实际上,空间域滤波和频率域滤波经常是对应的:
空间滤波实际上是图像与各种空间滤波器(模板)的卷积,而空间卷积的傅里叶变换是频率域中相应变换的乘积,因此频率域滤波可以用图像的傅里叶变换乘以相应的频率域滤波器。
连续变量函数的傅里叶变换暂且不提,我们直接来看图像的二维离散傅里叶变换,令f(x,y)表示一幅大小为[M,N]像素的数字图像,由F(u,v)表示图像的二维离散傅里叶变换(DFT):
指数项由欧拉公式获得,可以将其展开为正弦函数和余弦函数,频率域是使用u和v作为(频率)变量,由F(u,v)构成坐标系。由u和v构成的大小为[M,N]的矩形区域称为频率矩形,大小和输入图像的大小相同。
离散傅里叶反变换(IDFT)的形式为:
频率域原点处变换的值(F(0,0))称为傅里叶变换的直流分量,不难看出,F(0,0)等于f(x,y)平均值的M*N倍。还需要注意的是即使f(x,y)是实函数,它的变换通常也是复数。因此,傅里叶变换常用的是F(u,v)的频谱和相角,并将其显示为一幅图像。令R(u,v)和I(u,v)表示其实部和虚部,则傅里叶频谱(幅度)为:
变换的相交定义为:
有些地方还会提到功率谱,其实就是频谱的平方。通常傅里叶变换是关于原点共轭对称的,