Voronoi diagram polygons enclosed in geographic borders

人走茶凉 提交于 2019-11-28 20:46:38

You should be able to use the spatstat function dirichlet for this.

The first task is to get the counties converted into a spatstat observation window of class owin (code partially based on the answer by @jbaums):

library(maps)
library(maptools)
library(spatstat)
library(rgeos)

counties <- map('county', c('maryland,carroll', 'maryland,frederick', 
                            'maryland,montgomery', 'maryland,howard'), 
                fill=TRUE, plot=FALSE)
# fill=TRUE is necessary for converting this map object to SpatialPolygons
countries <- gUnaryUnion(map2SpatialPolygons(counties, IDs=counties$names,
                                 proj4string=CRS("+proj=longlat +datum=WGS84")))
W <- as(countries, "owin")

Then you just put the five points in the ppp format, make the Dirichlet tesslation and calctulate the areas:

X <- ppp(x=c(-77.208703, -77.456582, -77.090600,  -77.035668, -77.197144),
         y=c(39.188603, 39.347019, 39.672818, 39.501898, 39.389203), window = W)

y <- dirichlet(X) # Dirichlet tesselation
plot(y) # Plot tesselation
plot(X, add = TRUE) # Add points
tile.areas(y) #Areas
jbaums

Once we have both the Voronoi polygons and the counties as SpatialPolygons objects, we can achieve this with the help of gIntersection.

First, let's load some necessary libraries and prepare your data.

library(maptools)
library(rgeos)

counties <- map('county', c('maryland,carroll', 'maryland,frederick', 
                            'maryland,montgomery', 'maryland,howard'), 
                fill=TRUE, plot=FALSE)
# fill=TRUE is necessary for converting this map object to SpatialPolygons

p <- data.frame(x=c(-77.208703, -77.456582, -77.090600,  -77.035668, -77.197144),
                y=c(39.188603, 39.347019, 39.672818, 39.501898, 39.389203))

Now we can convert our counties map object to SpatialPolygons with map2SpatialPolygons from the maptools package. I've wrapped it in rgeos::gUnaryUnion to combine the four polygons into a single polygon (otherwise we'd have internal boundaries plotted down the track). I've also added the relevant projection.

counties.sp <- gUnaryUnion(
  map2SpatialPolygons(counties, IDs=counties$names,
                      proj4string=CRS("+proj=longlat +datum=WGS84")))

For converting the deldir object to a SpatialPolygons object, there's a nice function that I referred to here (hat-tip to Carson Farmer) and which @Spacedman subsequently modified (to clip to a given extent) and posted here.

voronoipolygons <- function(x, poly) {
  require(deldir)
  if (.hasSlot(x, 'coords')) {
    crds <- x@coords  
  } else crds <- x
  bb = bbox(poly)
  rw = as.numeric(t(bbox(poly)))
  z <- deldir(crds[,1], crds[,2],rw=rw)
  w <- tile.list(z)
  polys <- vector(mode='list', length=length(w))
  require(sp)
  for (i in seq(along=polys)) {
    pcrds <- cbind(w[[i]]$x, w[[i]]$y)
    pcrds <- rbind(pcrds, pcrds[1,])
    polys[[i]] <- Polygons(list(Polygon(pcrds)), ID=as.character(i))
  }
  SP <- SpatialPolygons(polys)

  SpatialPolygonsDataFrame(
    SP, data.frame(x=crds[,1], y=crds[,2], 
                   row.names=sapply(slot(SP, 'polygons'), 
                                    function(x) slot(x, 'ID'))))  
}

Now we can go ahead and use this to create our Voronoi SpatialPolygons.

v <- voronoipolygons(p, counties.sp)
proj4string(v) <- proj4string(counties.sp)

All that's left to do now is intersect the two geometries - the bread and butter of rgeos:

final <- gIntersection(counties.sp, v, byid=TRUE)

plot(final)
points(p, pch=20)

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!