ETL工作的实质就是从各个数据源提取数据,对数据进行转换,并最终加载填充数据到数据仓库维度建模后的表中。只有当这些维度/事实表被填充好,ETL工作才算完成。
本项目的数据分析过程在hadoop集群上实现,主要应用hive数据仓库工具,因此,采集并经过预处理后的数据,需要加载到hive数据仓库中,以进行后续的分析过程。
1. 创建ODS层数据表1.1. 原始日志数据表
drop table if exists ods_weblog_origin;
create table ods_weblog_origin(
valid string,
remote_addr string,
remote_user string,
time_local string,
request string,
status string,
body_bytes_sent string,
http_referer string,
http_user_agent string)
partitioned by (datestr string)
row format delimited
fields terminated by '\001';
1.2. 点击流模型pageviews表
drop table if exists ods_click_pageviews;
create table ods_click_pageviews(
session string,
remote_addr string,
remote_user string,
time_local string,
request string,
visit_step string,
page_staylong string,
http_referer string,
http_user_agent string,
body_bytes_sent string,
status string)
partitioned by (datestr string)
row format delimited
fields terminated by '\001';
1.3. 点击流visit模型表
drop table if exist ods_click_stream_visit;
create table ods_click_stream_visit(
session string,
remote_addr string,
inTime string,
outTime string,
inPage string,
outPage string,
referal string,
pageVisits int)
partitioned by (datestr string)
row format delimited
fields terminated by '\001';
2. 导入ODS层数据
load data inpath '/weblog/preprocessed/' overwrite into table
ods_weblog_origin partition(datestr='20130918');--数据导入
show partitions ods_weblog_origin;---查看分区
select count(*) from ods_weblog_origin; --统计导入的数据总数
点击流模型的两张表数据导入操作同上。
注:生产环境中应该将数据load命令,写在脚本中,然后配置在azkaban中定时运行,注意运行的时间点,应该在预处理数据完成之后。
3. 生成ODS层明细宽表3.1. 需求实现
整个数据分析的过程是按照数据仓库的层次分层进行的,总体来说,是从ODS原始数据中整理出一些中间表(比如,为后续分析方便,将原始数据中的时间、url等非结构化数据作结构化抽取,将各种字段信息进行细化,形成明细表),然后再在中间表的基础之上统计出各种指标数据。
3.2. ETL实现
l 建明细表ods_weblog_detail:
drop table ods_weblog_detail;
create table ods_weblog_detail(
valid string, --有效标识
remote_addr string, --来源IP
remote_user string, --用户标识
time_local string, --访问完整时间
daystr string, --访问日期
timestr string, --访问时间
month string, --访问月
day string, --访问日
hour string, --访问时
request string, --请求的url
status string, --响应码
body_bytes_sent string, --传输字节数
http_referer string, --来源url
ref_host string, --来源的host
ref_path string, --来源的路径
ref_query string, --来源参数query
ref_query_id string, --来源参数query的值
http_user_agent string --客户终端标识
)
partitioned by(datestr string);
l 通过查询插入数据到明细宽表 ods_weblog_detail中
1、 抽取refer_url到中间表 t_ods_tmp_referurl
也就是将来访url分离出host path query query id
drop table if exists t_ods_tmp_referurl;
create table t_ods_tmp_referurl as
SELECT a.,b.
FROM ods_weblog_origin a
LATERAL VIEW parse_url_tuple(regexp_replace(http_referer, "\"", ""), 'HOST', 'PATH','QUERY', 'QUERY:id') b as host, path, query, query_id;
注:lateral view用于和split, explode等UDTF一起使用,它能够将一列数据拆成多行数据。
UDTF(User-Defined Table-Generating Functions) 用来解决输入一行输出多行(On-to-many maping) 的需求。Explode也是拆列函数,比如Explode (ARRAY) ,array中的每个元素生成一行。
2、抽取转换time_local字段到中间表明细表 t_ods_tmp_detail
drop table if exists t_ods_tmp_detail;
create table t_ods_tmp_detail as
select b.*,substring(time_local,0,10) as daystr,
substring(time_local,12) as tmstr,
substring(time_local,6,2) as month,
substring(time_local,9,2) as day,
substring(time_local,11,3) as hour
from t_ods_tmp_referurl b;
3、以上语句可以合成一个总的语句
insert into table shizhan.ods_weblog_detail partition(datestr='2013-09-18')
select c.valid,c.remote_addr,c.remote_user,c.time_local,
substring(c.time_local,0,10) as daystr,
substring(c.time_local,12) as tmstr,
substring(c.time_local,6,2) as month,
substring(c.time_local,9,2) as day,
substring(c.time_local,11,3) as hour,
c.request,c.status,c.body_bytes_sent,c.http_referer,c.ref_host,c.ref_path,c.ref_query,c.ref_query_id,c.http_user_agent
from
(SELECT
a.valid,a.remote_addr,a.remote_user,a.time_local,
a.request,a.status,a.body_bytes_sent,a.http_referer,a.http_user_agent,b.ref_host,b.ref_path,b.ref_query,b.ref_query_id
FROM shizhan.ods_weblog_origin a LATERAL VIEW
parse_url_tuple(regexp_replace(http_referer, "\"", ""), 'HOST', 'PATH','QUERY', 'QUERY:id') b as ref_host, ref_path, ref_query,
ref_query_id) c;
来源:https://blog.51cto.com/14473726/2432523