Insert rows for missing dates/times

梦想的初衷 提交于 2019-11-25 21:58:23

I think the easiest thing ist to set Date first as already described, convert to zoo, and then just set a merge:

df$timestamp<-as.POSIXct(df$timestamp,format="%m/%d/%y %H:%M")

df1.zoo<-zoo(df[,-1],df[,1]) #set date to Index

df2 <- merge(df1.zoo,zoo(,seq(start(df1.zoo),end(df1.zoo),by="min")), all=TRUE)

Start and end are given from your df1 (original data) and you are setting by - e.g min - as you need for your example. all=TRUE sets all missing values at the missing dates to NAs.

This is an old question, but I just wanted to post a dplyr way of handling this, as I came across this post while searching for an answer to a similar problem. I find it more intuitive and easier on the eyes than the zoo approach.

library(dplyr)

ts <- seq.POSIXt(as.POSIXct("2001-09-01 0:00",'%m/%d/%y %H:%M'), as.POSIXct("2001-09-01 0:07",'%m/%d/%y %H:%M'), by="min")

ts <- seq.POSIXt(as.POSIXlt("2001-09-01 0:00"), as.POSIXlt("2001-09-01 0:07"), by="min")
ts <- format.POSIXct(ts,'%m/%d/%y %H:%M')

df <- data.frame(timestamp=ts)

data_with_missing_times <- full_join(df,original_data)

   timestamp     tr tt sr st
1 09/01/01 00:00 15 15 78 42
2 09/01/01 00:01 20 64 98 87
3 09/01/01 00:02 31 84 23 35
4 09/01/01 00:03 21 63 54 20
5 09/01/01 00:04 15 23 36 15
6 09/01/01 00:05 NA NA NA NA
7 09/01/01 00:06 NA NA NA NA
8 09/01/01 00:07 NA NA NA NA

Also using dplyr, this makes it easier to do something like change all those missing values to something else, which came in handy for me when plotting in ggplot.

data_with_missing_times %>% group_by(timestamp) %>% mutate_each(funs(ifelse(is.na(.),0,.)))

   timestamp     tr tt sr st
1 09/01/01 00:00 15 15 78 42
2 09/01/01 00:01 20 64 98 87
3 09/01/01 00:02 31 84 23 35
4 09/01/01 00:03 21 63 54 20
5 09/01/01 00:04 15 23 36 15
6 09/01/01 00:05  0  0  0  0
7 09/01/01 00:06  0  0  0  0
8 09/01/01 00:07  0  0  0  0

Date padding is implemented in the padr package in R. If you store your data frame, with your date-time variable stored as POSIXct or POSIXlt. All you need to do is:

library(padr)
pad(df_name)

See vignette("padr") or this blog post for its working.

# some made-up data
originaldf <- data.frame(timestamp=c("9/1/01 0:00","9/1/01 0:01","9/1/01 0:03","9/1/01 0:04"),
    tr = rnorm(4,0,1),
    tt = rnorm(4,0,1))

originaldf$minAsPOSIX <- as.POSIXct(originaldf$timestamp, format="%m/%d/%y %H:%M", tz="GMT")

# Generate vector of all minutes
ndays <- 1 # number of days to generate
minAsNumeric <- 60*60*24*243 + seq(0,60*60*24*ndays,by=60)

# convert those minutes to POSIX
minAsPOSIX <- as.POSIXct(minAsNumeric, origin="2001-01-01", tz="GMT")

# new df
newdf <- merge(data.frame(minAsPOSIX),originaldf,all.x=TRUE, by="minAsPOSIX")

In case you want to substitute the NA values acquired by any method mentioned above with zeroes, you can do this:

df[is.na(df)] <- 0

(I orginally wanted to comment this on Ibollar's answer but I lack the necessary reputation, thus I posted as an answer)

df1.zoo <- zoo(df1[,-1], as.POSIXlt(df1[,1], format = "%Y-%m-%d %H:%M:%S")) #set date to Index: Notice that column 1 is Timestamp type and is named as "TS"

full.frame.zoo <- zoo(NA, seq(start(df1.zoo), end(df1.zoo), by="min")) # zoo object
full.frame.df  <- data.frame(TS = as.POSIXlt(index(full.frame.zoo), format = "%Y-%m-%d %H:%M:%S")) # conver zoo object to data frame

full.vancouver <- merge(full.frame.df, df1, all = TRUE) # merge

I was looking for something similar where instead of filling out missing timestamps my data was in months and days. So I wanted to generate a sequence of months that would cater for leap years et cetera. I used lubridate:

date <- df$timestamp[1]
date_list <- c(date)
while (date < df$timestamp[nrow(df)]){
    date <- date %m+% months(1) 
    date_list <- c(date_list,date)
}
date_list <- format(as.Date(date_list),"%Y-%m-%d")
df_1 <- data.frame(months=date_list, stringsAsFactors = F)

This will give me a list of dates in incremental months. Then I join

df_with_missing_months <- full_join(df_1,df)

There are some advances in handling time series data in R, e.g. the tsibble package added such time series manipulations in tidy way:

library(tsibble)
library(lubridate)

ts <- lubridate::dmy_hm(c("9/1/01 0:00","9/1/01 0:01","9/1/01 0:03","9/1/01 0:27"))
originaldf <- tsibble(timestamp = ts,
                      tr        = rnorm(4,0,1),
                      tt        = rnorm(4,0,1),
                      index     = timestamp)

originaldf %>% 
  fill_gaps()

I think this can accomplished by using complete in tidyr package.

library(tidyverse)
df <- df %>%
      complete(timestamp = seq.POSIXt(min(timestamp), max(timestamp), by = "minute"), 
               tr, tt, sr,st)

you can also initialize your start date and end date instead of using min(timestamp) and max(timestamp).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!