I have the following data:
Employee Account Currency Amount Location
Test 2 Basic USD 3000 Airport
Test 2 Net USD 2000 Airport
Test 1 Basic USD 4000 Town
Test 1 Net USD 3000 Town
Test 3 Basic GBP 5000 Town
Test 3 Net GBP 4000 Town
I can manage to pivot by doing the following:
import pandas as pd
table = pd.pivot_table(df, values=['Amount'], index=['Location', 'Employee'], columns=['Account', 'Currency'], fill_value=0, aggfunc=np.sum, dropna=True)
Output:
Amount
Account Basic Net
Currency GBP USD GBP USD
Location Employee
Airport Test 2 0 3000 0 2000
Town Test 1 0 4000 0 3000
Test 3 5000 0 4000 0
How can I achieve subtotal by location and then a final grand total at the bottom. Desired output:
Amount
Account Basic Net
Currency GBP USD GBP USD
Location Employee
Airport Test 2 0 3000 0 2000
Airport Total 3000 0 2000
Town Test 1 0 4000 0 3000
Test 3 5000 0 4000 0
Town Total 5000 4000 4000 3000
Grand Total 5000 7000 4000 5000
I tried following the following. But it does not give the desired output. Thank you.
your pivot table
table = pd.pivot_table(df, values=['Amount'],
index=['Location', 'Employee'],
columns=['Account', 'Currency'],
fill_value=0, aggfunc=np.sum, dropna=True, )
print(table)
Amount
Account Basic Net
Currency GBP USD GBP USD
Location Employee
Airport Test 2 0 3000 0 2000
Town Test 1 0 4000 0 3000
Test 3 5000 0 4000 0
pandas.concat
pd.concat([
d.append(d.sum().rename((k, 'Total')))
for k, d in table.groupby(level=0)
]).append(table.sum().rename(('Grand', 'Total')))
Amount
Account Basic Net
Currency GBP USD GBP USD
Location Employee
Airport 2 0 3000 0 2000
Total 0 3000 0 2000
Town 1 0 4000 0 3000
3 5000 0 4000 0
Total 5000 4000 4000 3000
Grand Total 5000 7000 4000 5000
Old Answer
for posterity
build sub totals
tab_tots = table.groupby(level='Location').sum()
tab_tots.index = [tab_tots.index, ['Total'] * len(tab_tots)]
print(tab_tots)
Amount
Account Basic Net
Currency GBP USD GBP USD
Location
Airport Total 0 3000 0 2000
Town Total 5000 4000 4000 3000
all together
pd.concat(
[table, tab_tots]
).sort_index().append(
table.sum().rename(('Grand', 'Total'))
)
Here is a two-liner that should work. The loc
method allows for subsetting the rows by their indexes, since there is a multiIndex, I feed loc
a tuple for the row insertion points on the left hand side. Using 'Town' without the tuple, pulls all the corresponding levels of the index.
In the second line, I have to drop the last row of the DataFrame from the sum
and I do this using its shape attribute.
In[1]:
table.loc[('Town Total', ''),:] = table.loc['Town'].sum()
table.loc[('Grand Total', ''),:] = table.iloc[:(table.shape[0]-1), :].sum()
In[2]:
table
Out[2]:
Amount
Account Basic Net
Currency GBP USD GBP USD
Location Employee
Airport 2 0 3000 0 2000
Town 1 0 4000 0 3000
3 5000 0 4000 0
Town Total 5000 4000 4000 3000
Grand Total 5000 7000 4000 5000
来源:https://stackoverflow.com/questions/41383302/pivot-table-subtotals-in-pandas