数据结构之证明法

血红的双手。 提交于 2019-11-28 09:46:53

反证法

  • 基本概念:
    一般地,假设原命题不成立(即 在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这样的证明方法叫做反证法

  • 基本操作:
    1. 分清命题p=>q的条件和结论;
    2. 做出与命题结论q相矛盾的假定┐q
    3. 由p和┐q出发,应用正确的推理方法,推出矛盾结果
    4. 断定产生矛盾结果的原因,在于开始所作假定┐q不真,于是原结论q成立,从而间接地证明了命题p=>q为真

      第三步所说的矛盾结果,通常是指推出的结果与已知条件、定义、定理或临时假定矛盾、以及自相矛盾等。

  • 适用性:
    适用于“正难则反”的证明题
    凡是“至少”、“唯一”或含有否定词的命题适宜用反证法。

数学归纳法

  • 基本概念:
    从初始情况,逐渐递推出n的结论。
  • 基本操作:
    一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
    1. (归纳奠基)证明当n取第一个值\(n_0\)命题成立;
    2. (归纳递推)假设n=k(k≥\(n_0\))时命题成立,证明当n=k+1时命题也成立。
      只要完成上面两个步骤,即可断定(递推出)命题从\(n_0\)开始的所有正整数n都成立。
  • 注意:
    用数学归纳法证明命题时,需注意:
    1. 第一步是基础,首先要验证n=\(n_0\)时成立,注意\(n_0\)不一定为1;
    2. 第二步是依据,在第二步中,关键是要正确合理地运用归纳假设,尤其要弄清k到k+1的变化,两个步骤缺一不可,且书写必须规范。
  • 适用性:
    只适用于与正整数n有关的命题的证明方法
  • 补充:
    用数学归纳法还可以解决数列中的归纳猜想问题,基本步骤是:观察、归纳、猜想、证明,一般要根据已知条件和递推关系,先求出数列的前几项,然后总结归纳其中的规律,猜想结论,再利用数学归纳法证明。猜想是证明的前提和对象,因此务必保持猜想的正确性,同时注意数学归纳法的书写步骤。
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!