Obtain standard errors of regression coefficients for an “mlm” object returned by `lm()`

倾然丶 夕夏残阳落幕 提交于 2019-11-28 08:28:21

问题


I'd like to run 10 regressions against the same regressor, then pull all the standard errors without using a loop.

depVars <- as.matrix(data[,1:10]) # multiple dependent variables
regressor <- as.matrix([,11]) # independent variable
allModels <- lm(depVars ~ regressor) # multiple, single variable regressions

summary(allModels)[1] # Can "view" the standard error for 1st regression, but can't extract...

allModels is stored as an "mlm" object, which is really tough to work with. It'd be great if I could store a list of lm objects or a matrix with statistics of interest.

Again, the objective is to NOT use a loop. Here is a loop equivalent:

regressor <- as.matrix([,11]) # independent variable
for(i in 1:10) { 
  tempObject <- lm(data[,i] ~ regressor) # single regressions
  table1Data[i,1] <- summary(tempObject)$coefficients[2,2] # assign std error
  rm(tempObject)
  }

回答1:


If you put your data in long format it's very easy to get a bunch of regression results using lmList from the nlme or lme4 packages. The output is a list of regression results and the summary can give you a matrix of coefficients, just like you wanted.

library(lme4)

m <- lmList( y ~ x | group, data = dat)
summary(m)$coefficients

Those coefficients are in a simple 3 dimensional array so the standard errors are at [,2,2].




回答2:


Given an "mlm" model object model, you can use the below function written by me to get standard errors of coefficients. This is very efficient: no loop, and no access to summary.mlm().

std_mlm <- function (model) {
  Rinv <- with(model$qr, backsolve(qr, diag(rank)))
  ## unscaled standard error
  std_unscaled <- sqrt(rowSums(Rinv ^ 2)[order(model$qr$pivot)])
  ## residual standard error
  sigma <- sqrt(colSums(model$residuals ^ 2) / model$df.residual)
  ## return final standard error
  ## each column corresponds to a model
  "dimnames<-"(outer(std_unscaled, sigma), list = dimnames(model$coefficients))
  }

A simple, reproducible example

set.seed(0)
Y <- matrix(rnorm(50 * 5), 50)    ## assume there are 5 responses
X <- rnorm(50)    ## covariate

fit <- lm(Y ~ X)

We all know that it is simple to extract estimated coefficients via:

fit$coefficients    ## or `coef(fit)`
#                   [,1]       [,2]        [,3]        [,4]        [,5]
#(Intercept) -0.21013925  0.1162145  0.04470235  0.08785647  0.02146662
#X            0.04110489 -0.1954611 -0.07979964 -0.02325163 -0.17854525

Now let's apply our std_mlm:

std_mlm(fit)
#                 [,1]      [,2]      [,3]      [,4]      [,5]
#(Intercept) 0.1297150 0.1400600 0.1558927 0.1456127 0.1186233
#X           0.1259283 0.1359712 0.1513418 0.1413618 0.1151603

We can of course, call summary.mlm just to check our result is correct:

coef(summary(fit))
#Response Y1 :
#               Estimate Std. Error    t value  Pr(>|t|)
#(Intercept) -0.21013925  0.1297150 -1.6200072 0.1117830
#X            0.04110489  0.1259283  0.3264151 0.7455293
#
#Response Y2 :
#              Estimate Std. Error    t value  Pr(>|t|)
#(Intercept)  0.1162145  0.1400600  0.8297485 0.4107887
#X           -0.1954611  0.1359712 -1.4375183 0.1570583
#
#Response Y3 :
#               Estimate Std. Error    t value  Pr(>|t|)
#(Intercept)  0.04470235  0.1558927  0.2867508 0.7755373
#X           -0.07979964  0.1513418 -0.5272811 0.6004272
#
#Response Y4 :
#               Estimate Std. Error    t value  Pr(>|t|)
#(Intercept)  0.08785647  0.1456127  0.6033574 0.5491116
#X           -0.02325163  0.1413618 -0.1644831 0.8700415
#
#Response Y5 :
#               Estimate Std. Error    t value  Pr(>|t|)
#(Intercept)  0.02146662  0.1186233  0.1809646 0.8571573
#X           -0.17854525  0.1151603 -1.5504057 0.1276132

Yes, all correct!




回答3:


Here an option:

  1. put your data in the long format using regressor as an id key.
  2. do your regression against value by group of variable.

For example , using mtcars data set:

library(reshape2)
dat.m <- melt(mtcars,id.vars='mpg')  ## mpg is my regressor
library(plyr)
ddply(dat.m,.(variable),function(x)coef(lm(variable~value,data=x)))
  variable (Intercept)         value
1       cyl           1  8.336774e-18
2      disp           1  6.529223e-19
3        hp           1  1.106781e-18
4      drat           1 -1.505237e-16
5        wt           1  8.846955e-17
6      qsec           1  6.167713e-17
7        vs           1  2.442366e-16
8        am           1 -3.381738e-16
9      gear           1 -8.141220e-17
10     carb           1 -6.455094e-17


来源:https://stackoverflow.com/questions/19740292/obtain-standard-errors-of-regression-coefficients-for-an-mlm-object-returned-b

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!