How to set specific gpu in tensorflow?

ε祈祈猫儿з 提交于 2019-11-28 05:52:34

I believe that you need to set CUDA_VISIBLE_DEVICES=1. Or which ever GPU you want to use. If you make only one GPU visible, you will refer to it as /gpu:0 in tensorflow regardless of what you set the environment variable to.

More info on that environment variable: https://devblogs.nvidia.com/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/

Nandeesh

There are 3 ways to achieve this:

  1. Using CUDA_VISIBLE_DEVICES environment variable. by setting setting environment variable CUDA_VISIBLE_DEVICES="1" makes only device 1 visible and by setting CUDA_VISIBLE_DEVICES="0,1" makes devices 0 and 1 visible. You can do this in python by having a line os.environ["CUDA_VISIBLE_DEVICES"]="0,1" after importing os package.

  2. Using with tf.device('/gpu:2') and the create the graph. Then it will use GPU device 2 to run.

  3. Using config = tf.ConfigProto(device_count = {'GPU': 1}) and then sess = tf.Session(config=config). This will use GPU device 1.

TF would allocate all available memory on each visible GPU if not told otherwise. Here are 4 methods to stick to just one (or a few) GPUs.

Bash solution. Set CUDA_VISIBLE_DEVICES=0,1 in your terminal/console before starting python or jupyter notebook.

Python solution. run next 2 lines of code before constructing a session

import os
os.environ["CUDA_VISIBLE_DEVICES"]="0,1"

Automated solution. Method below will automatically detect GPU devices that are not used by other scripts and set CUDA_VISIBLE_DEVICES for you. You have to call mask_unused_gpus before constructing a session. It will filter out GPUs by current memory usage. This way you can run multiple instances of your script at once without changing your code or setting console parameters.

The function:

import subprocess as sp
import os

def mask_unused_gpus(leave_unmasked=1):
  ACCEPTABLE_AVAILABLE_MEMORY = 1024
  COMMAND = "nvidia-smi --query-gpu=memory.free --format=csv"

  try:
    _output_to_list = lambda x: x.decode('ascii').split('\n')[:-1]
    memory_free_info = _output_to_list(sp.check_output(COMMAND.split()))[1:]
    memory_free_values = [int(x.split()[0]) for i, x in enumerate(memory_free_info)]
    available_gpus = [i for i, x in enumerate(memory_free_values) if x > ACCEPTABLE_AVAILABLE_MEMORY]

    if len(available_gpus) < leave_unmasked: raise ValueError('Found only %d usable GPUs in the system' % len(available_gpus))
    os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, available_gpus[:leave_unmasked]))
  except Exception as e:
    print('"nvidia-smi" is probably not installed. GPUs are not masked', e)

mask_unused_gpus(2)

Limitations: if you start multiple scripts at once it might cause a collision, because memory is not allocated immediately when you construct a session. In case it is a problem for you, you can use a randomized version as in original source code: mask_busy_gpus()

Tensorflow 2.0 suggest yet another method:

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
  # Restrict TensorFlow to only use the first GPU
  try:
    tf.config.experimental.set_visible_devices(gpus[0], 'GPU')
  except RuntimeError as e:
    # Visible devices must be set at program startup
    print(e)

You can modify the GPU options settings by adding at the begining of your python script:

gpu_options = tf.GPUOptions(visible_device_list="0")
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

"0" is here the name of the GPU you want to use. You can have the list of the GPU available by typing the command nvidia-smi in the terminal prompt.


With Keras, these 2 functions allow the selection of CPU or GPU and in the case of GPU the fraction of memory that will be used.

import os
from keras.backend.tensorflow_backend import set_session
import tensorflow as tf



def set_cpu_option():
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # see issue #152
    os.environ["CUDA_VISIBLE_DEVICES"] = ""
    os.environ["CUDA_VISIBLE_DEVICES"] = ""


def set_gpu_option(which_gpu, fraction_memory):
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = fraction_memory
    config.gpu_options.visible_device_list = which_gpu
    set_session(tf.Session(config=config))
    return

set_gpu_option("0", 0.9)
# or 
set_cpu_option()
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!