Plot a heart in R [duplicate]

 ̄綄美尐妖づ 提交于 2019-11-28 02:52:54

This is an example of plotting a "parametric equation", i.e. a pairing of two separate equations for x and y that share a common parameter. You can find many common curves and shapes that can be written within such a framework.

dat<- data.frame(t=seq(0, 2*pi, by=0.1) )
 xhrt <- function(t) 16*sin(t)^3
 yhrt <- function(t) 13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t)
 dat$y=yhrt(dat$t)
 dat$x=xhrt(dat$t)
 with(dat, plot(x,y, type="l"))

Other Parametric (and implicit and polar) Heart Eqns

You also could "heat it up" with using the "fill" capability of the polygon function:

with(dat, polygon(x,y, col="hotpink"))   

And if you just want little hearts to sprinkle around at various places, you could use the Symbol font version of "heart" after looking at the help(points) page and using the TestChars function:

points(c(10,-10, -15, 15), c(-10, -10, 10, 10), pch=169, font=5)

Windows users may want to see if adding the Cairo package helps gain access to card symbols including "hearts".( When I tested the TestChars function on the WinXP "side" of my MacPro I did not get hearts, and paging through the "special symbols" in MS-Word did not uncover anything. So I did a search of Rhelp and found a recent posting by Ivo Welch. He was reporting a bug, but they look OK on my machine.) Further note... I think the hearts and diamonds codes in his were reversed.

library(Cairo)

clubs <- expression(symbol('\247'))
hearts <- expression(symbol('\251'))
diamonds <- expression(symbol('\250'))
spades <- expression(symbol('\252'))
csymbols <- c(clubs, hearts, diamonds, spades)

plot( 0, xlim=c(0,5), ylim=c(0,2), type="n" )
clr <- c("black", "red", "red", "black") 
for (i in 1:4) {
  hline <- function( yloc, ... ) 
         for (i in 1:length(yloc)) 
             lines( c(-1,6), c(yloc[i],yloc[i]), col="gray")  
              hline(0.9); 
                hline(1.0);
                hline(1.1);
                hline(1.2)  
 text( i, 1, csymbols[i], col=clr[i], cex=5 )  
 text( i, 0.5, csymbols[i], col=clr[i] ) }

# Also try this
plot(1,1)
text(x=1+0.2*cos(seq(0, 2*pi, by=.5)), 
     y=1+0.2*sin(seq(0, 2*pi, by=.5)), 
                  expression(symbol('\251') ) )

Simple and ugly hack:

plot(1, 1, pch = "♥", cex = 20, xlab = "", ylab = "", col = "firebrick3")

From a blog post:

Solve the parametric equation for y (does SO allow math formatting?)

x^2 + (5y/4-sqrt(abs(x)))^2 = 1

sqrt(1-x^2) = 5y/4 - sqrt(abs(x))

y = 4/5*(sqrt(1-x^2)+sqrt(abs(x)))

MASS::eqscplot(0:1,0:1,type="n",xlim=c(-1,1),ylim=c(-0.8,1.5))
curve(4/5*sqrt(1-x^2)+sqrt(abs(x)),from=-1,to=1,add=TRUE,col=2)
curve(4/5*-sqrt(1-x^2)+sqrt(abs(x)),from=-1,to=1,add=TRUE,col=2)

Here is a cardioid in ggplot:

library(ggplot2)

dat <- data.frame(x=seq(0, 2*pi, length.out=100))
cardioid <- function(x, a=1)a*(1-cos(x))
ggplot(dat, aes(x=x)) + stat_function(fun=cardioid) + coord_polar()

And the heart plot (linked by @BenBolker):

heart <- function(x)2-2*sin(x) + sin(x)*(sqrt(abs(cos(x))))/(sin(x)+1.4)
ggplot(dat, aes(x=x)) + stat_function(fun=heart) + coord_polar(start=-pi/2)

baptiste

Another option,

xmin <- -5
xmax <- 10
n <- 1e3
xs<-seq(xmin,xmax,length=n)
ys<-seq(xmin,xmax,length=n)

f = function(x, y) (x^2+0.7*y^2-1)^3 - x^2*y^3
zs <- outer(xs,ys,FUN=f)

h <- contourLines(xs,ys,zs,levels=0)
library(txtplot)
with(h[[1]], txtplot(x, y))



     +---+-******----+----******-+---+
 1.5 + *****    **********     ***** +
   1 +**                           * +
 0.5 +**                           * +
     | ***                       *** |
   0 +   ****                 ****   +
-0.5 +      *****         *****      +
  -1 +          ***********          +
     +---+-----+-----*-----+-----+---+
        -1   -0.5    0    0.5    1    
Carl Witthoft

If you want to be more "mature", try out the following (posted to R-help a few years ago):

thong<-function(h = 9){ 
     # set up plot  
    xrange=c(-15,15)  
    yrange=c(0,16)  
    plot(0,xlim=xrange,ylim=yrange,type='n')  

     # draw outer envelope  
    yr=seq(yrange[1],yrange[2],len=50)  
    offsetFn=function(y){2*sin(0+y/3)}  
    offset=offsetFn(yr)  
    leftE = function(y){-10-offsetFn(y)}  
    rightE = function(y){10+offsetFn(y)}  

    xp=c(leftE(yr),rev(rightE(yr))) 
    yp=c(yr,rev(yr))  
    polygon(xp,yp,col="#ffeecc",border=NA) 

    # feasible region upper limit: 
    # left and right defined by triple-log function:  
    xt=seq(0,rightE(h),len=100)   
    yt=log(1+log(1+log(xt+1)))   
    yt=yt-min(yt)  
    yt=h*yt/max(yt)  
    x=c(leftE(h),rightE(h),rev(xt),-xt) 
    y=c(h,h,rev(yt),yt) 
    polygon(x,y,col="red",border=NA)  
}

A few more varieties:

I do not know anything about R, but if you plot this function you will get a heart:

x^2+(y-(x^2)^(1/3))^2=1
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!