问题
I have a list of lengths for pipes and I need fit these lengths within maximum allowed length for the best yield
For example the max allowed length is 90 and the pieces I need to make are:
25, 60, 13, 48, 23, 29, 27, 22
For the best fit within 90 I'd have a group of these numbers:
60, 29 (89 total)
27, 25, 13, 23 (88 total)
48, 22 (70 total)
I found this answer to similar question, but I don't know how to convert it to use in excel or javascript or php
Any help would be appreciated.
Thank you.
回答1:
Here is one possible solution. But it is a brute force algorithm so it's not as fast as possible.
function bestComb(nums, target) {
var combinations = [];
var sums = [];
function loop(idx, comb, sum) {
if(idx >= nums.length || sum + nums[idx] > target) {
combinations.push(comb.slice());
sums.push(sum);
return;
}
for(var i = idx; i < nums.length; i++) {
if(sum + nums[i] > target) break;
if(sum + nums[i] === target) {
combinations.push(comb.slice());
combinations[combinations.length - 1].push(nums[i]);
sums.push(sum + nums[i]);
break;
}
comb.push(nums[i]);
loop(i + 1, comb, sum + nums[i]);
comb.pop();
}
}
nums = nums.slice();
nums.sort(function(a,b) {return a - b});
loop(0, [], 0);
if(sums.length === 0) return null;
var maxSum = sums[0],
maxComb = combinations[0];
for(var i = 1; i < sums.length; i++) {
if(sums[i] > maxSum || sums[i] === maxSum && combinations[i].length < maxComb.length) {
maxSum = sums[i];
maxComb = combinations[i];
}
}
return maxComb;
}
var nums = [25, 60, 13, 48, 23, 29, 27, 22];
var solution = bestComb(nums, 90);
console.log(solution);
回答2:
This is based on John Coleman's VBA code. It will create a list of all 255 (2 8-1) candidates and place them in order of best to worst:
Sub MAIN()
Dim i As Long, st As String
Dim a(1 To 8) As Integer
Dim ary
a(1) = 25
a(2) = 60
a(3) = 13
a(4) = 48
a(5) = 23
a(6) = 29
a(7) = 27
a(8) = 22
st = ListSubsets(a)
ary = Split(st, vbCrLf)
For i = LBound(ary) + 1 To UBound(ary) - 1
Cells(i, 2) = Replace(ary(i + 1), " ", "")
Next i
Call DistributeData
Call SortData
End Sub
Function ListSubsets(Items As Variant) As String
Dim CodeVector() As Integer
Dim i As Integer
Dim lower As Integer, upper As Integer
Dim SubList As String
Dim NewSub As String
Dim done As Boolean
Dim OddStep As Boolean
OddStep = True
lower = LBound(Items)
upper = UBound(Items)
ReDim CodeVector(lower To upper) 'it starts all 0
Do Until done
'Add a new subset according to current contents
'of CodeVector
NewSub = ""
For i = lower To upper
If CodeVector(i) = 1 Then
If NewSub = "" Then
NewSub = Items(i)
Else
NewSub = NewSub & ", " & Items(i)
End If
End If
Next i
If NewSub = "" Then NewSub = "{}" 'empty set
SubList = SubList & vbCrLf & NewSub
'now update code vector
If OddStep Then
'just flip first bit
CodeVector(lower) = 1 - CodeVector(lower)
Else
'first locate first 1
i = lower
Do While CodeVector(i) <> 1
i = i + 1
Loop
'done if i = upper:
If i = upper Then
done = True
Else
'if not done then flip the *next* bit:
i = i + 1
CodeVector(i) = 1 - CodeVector(i)
End If
End If
OddStep = Not OddStep 'toggles between even and odd steps
Loop
ListSubsets = SubList
End Function
Sub DistributeData()
Columns("B:B").Select
Selection.TextToColumns Destination:=Range("B1"), DataType:=xlDelimited, _
TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=False, _
Semicolon:=False, Comma:=True, Space:=False, Other:=False, FieldInfo _
:=Array(Array(1, 1), Array(2, 1), Array(3, 1)), TrailingMinusNumbers:=True
Range("A1:A255").Formula = "=if(sum(B1:I1)>=90,9999,90-sum(B1:I1))"
End Sub
Sub SortData()
Range("A1:I255").Select
Application.CutCopyMode = False
ActiveWorkbook.Worksheets("Sheet5").Sort.SortFields.Clear
ActiveWorkbook.Worksheets("Sheet5").Sort.SortFields.Add Key:=Range("A1:A255") _
, SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal
With ActiveWorkbook.Worksheets("Sheet5").Sort
.SetRange Range("A1:I255")
.Header = xlGuess
.MatchCase = False
.Orientation = xlTopToBottom
.SortMethod = xlPinYin
.Apply
End With
End Sub
So the best combos are:
{60,29} and {25,13,29,22}
REFERENCE:
John Coleman's Code
来源:https://stackoverflow.com/questions/31764575/best-possible-combination-sum-of-predefined-numbers-that-smaller-or-equal-nn