问题
I'm trying to create an app which ultimately needs the mean and sd of a protein's concentration on the log scale. Since the log-scale values are almost never reported, I've found references which allow me to approximate log-scale using commonly available data (the mean + sd, median + range, median + IQR, 5 point summary, etc.).
Users will enter the data using a table currently implemented using rhandsontable until I've added enough error handling to accommodate CSV files, and I want to limit the columns displayed in this table so that it's not overwhelming. This I have done, as can be seen from the following reproducible example.
library(shiny)
library(rhandsontable)
library(tidyverse)
make_DF <- function(n) {
DF <- data_frame(
entry = 1:n,
protein = NA_character_,
MW = NA_real_,
n = NA_integer_,
mean = NA_real_,
sd = NA_real_,
se = NA_real_,
min = NA_real_,
q1 = NA_real_,
median = NA_real_,
q3 = NA_real_,
max = NA_real_,
log_mean = NA_real_,
log_sd = NA_real_,
log_min = NA_real_,
log_q1 = NA_real_,
log_median = NA_real_,
log_q3 = NA_real_,
log_max = NA_real_,
units = factor("ng/mL", levels = c("pg/mL", "ng/mL", 'mcg/mL', 'mg/mL', 'g/mL')
)
)
DF[-1]
}
ui <- fluidPage(
tabPanel("Input",
column(4,
wellPanel(
checkboxGroupInput("data_format",
"The data consists of",
c("Mean and standard deviation" = "mean_sd",
"Mean and standard error" = "mean_se",
"Mean and standard deviation (log scale)" = "log_mean_sd",
"Mean and standard error (log scale)" = "log_mean_se",
"Median, min, and max" = "median_range",
"Median, Q1, and Q3" = 'median_iqr',
"Five point summary" = 'five_point'
# "Other combination" = 'other')
)
),
# p("Please note that selecting 'other' may result in invalid combinations."),
# titlePanel("Number of Entries"),
numericInput("n_entries",
"Number of Concentrations to estimate:",
value = 1,
min = 1),
actionButton("update_table", "Update Table")
)
),
column(8,
rHandsontableOutput("input_data") )
),
tabPanel("Output",
column(12,
tableOutput("test_output")
)
)
)
server <- function(input, output) {
# create or update the data frame by adding some rows
DF <- eventReactive(input$update_table, {
DF_new <- make_DF(input$n_entries)
# if a table does not already exist, this is our DF
if (input$update_table == 1) {
return(DF_new)
} else { # otherwise, we will append the new data frame to the old.
tmp_df <- hot_to_r(input$input_data)
return(rbind(tmp_df, DF_new))
}
})
# determine which variables to show based on user input
shown_variables <- eventReactive(input$update_table, {
unique(unlist(lapply(input$data_format, function(x) {
switch(x,
"mean_sd" = c('mean', 'sd'),
"mean_se" = c('mean', 'se'),
'log_mean_sd' = c("log_mean", 'log_sd'),
"log_mean_se" = c('log_mean', 'log_se'),
"median_range" = c('median','min', 'max'),
'median_IQR' = c("median", 'q1','q3'),
"five_point" = c('median', 'min', 'q1', 'q3', 'max'))
})))
})
# # finally, set up table for data entry
observeEvent(input$update_table, {
DF_shown <- DF()[c('protein', 'MW', 'n', shown_variables(), "units")]
output$test_output <- renderTable(DF())
output$input_data <- renderRHandsontable({rhandsontable(DF_shown)})
})
}
shinyApp(ui = ui, server = server)
I also want to be able to dynamically change which fields are displayed without losing data. For example, suppose the user enters data for 5 proteins where the mean and sd are available. Then, the user has 3 more where the median and range are reported. If the user deselects mean/sd when median/range are selected, the current working code will lose the mean and standard deviation. In the context of what I'm doing now, that means I need to effectively perform an rbind
using DF()
and the newly requested rows. This is giving me errors:
# infinite loop error
server <- function(input, output) {
# create or update the data frame by adding some rows
DF <- eventReactive(input$update_table, {
DF_new <- make_DF(input$n_entries)
# if a table does not already exist, this is our DF
if (input$update_table == 1) {
return(DF_new)
} else { # otherwise, we will append the new data frame to the old.
tmp_df <- hot_to_r(input$input_data)
return(rbind(DF(), DF_new))
}
})
# determine which variables to show based on user input
shown_variables <- eventReactive(input$update_table, {
unique(unlist(lapply(input$data_format, function(x) {
switch(x,
"mean_sd" = c('mean', 'sd'),
"mean_se" = c('mean', 'se'),
'log_mean_sd' = c("log_mean", 'log_sd'),
"log_mean_se" = c('log_mean', 'log_se'),
"median_range" = c('median','min', 'max'),
'median_IQR' = c("median", 'q1','q3'),
"five_point" = c('median', 'min', 'q1', 'q3', 'max'))
})))
})
# # finally, set up table for data entry
observeEvent(input$update_table, {
DF_shown <- DF()[c('protein', 'MW', 'n', shown_variables(), "units")]
output$test_output <- renderTable(DF())
output$input_data <- renderRHandsontable({rhandsontable(DF_shown)})
})
}
I've seen other individuals with similar issues (e.g. Append a reactive data frame in shiny R), but there doesn't appear to be an accepted answer yet. Any ideas on solutions or work-arounds? I'm open to any ideas that allow users to limit which fields are visible, but keep all entered data whether or not it is actually displayed.
回答1:
Thanks to Joe Cheng and Hao Wu and their answers on github (https://github.com/rstudio/shiny/issues/2083), the solution is to use the reactiveValues
function to store the data frame. As I understand their explanation, the problem is occurring because (unlike traditional data frames), the reactive data frame DF()
never finishes calculating.
Here's a working solution to the based on their answers:
library(shiny)
library(rhandsontable)
library(tidyverse)
make_DF <- function(n) {
DF <- data_frame(
entry = 1:n,
protein = NA_character_,
MW = NA_real_,
n = NA_integer_,
mean = NA_real_,
sd = NA_real_,
se = NA_real_,
min = NA_real_,
q1 = NA_real_,
median = NA_real_,
q3 = NA_real_,
max = NA_real_,
log_mean = NA_real_,
log_sd = NA_real_,
log_min = NA_real_,
log_q1 = NA_real_,
log_median = NA_real_,
log_q3 = NA_real_,
log_max = NA_real_,
units = factor("ng/mL", levels = c("pg/mL", "ng/mL", 'mcg/mL', 'mg/mL', 'g/mL')
)
)
DF[-1]
}
ui <- fluidPage(
tabPanel("Input",
column(4,
wellPanel(
checkboxGroupInput("data_format",
"The data consists of",
c("Mean and standard deviation" = "mean_sd",
"Mean and standard error" = "mean_se",
"Mean and standard deviation (log scale)" = "log_mean_sd",
"Mean and standard error (log scale)" = "log_mean_se",
"Median, min, and max" = "median_range",
"Median, Q1, and Q3" = 'median_iqr',
"Five point summary" = 'five_point'
# "Other combination" = 'other')
)
),
# p("Please note that selecting 'other' may result in invalid combinations."),
# titlePanel("Number of Entries"),
numericInput("n_entries",
"Number of Concentrations to estimate:",
value = 1,
min = 1),
actionButton("update_table", "Update Table")
)
),
column(8,
rHandsontableOutput("input_data") )
),
tabPanel("Output",
column(12,
tableOutput("test_output")
)
)
)
server <- function(input, output) {
# create or update the data frame by adding some rows
values <- reactiveValues()
observeEvent(input$update_table, {
# determine which variables to show based on user input
values$shown_variables <- unique(unlist(lapply(input$data_format, function(x) {
switch(x,
"mean_sd" = c('mean', 'sd'),
"mean_se" = c('mean', 'se'),
'log_mean_sd' = c("log_mean", 'log_sd'),
"log_mean_se" = c('log_mean', 'log_se'),
"median_range" = c('median','min', 'max'),
'median_IQR' = c("median", 'q1','q3'),
"five_point" = c('median', 'min', 'q1', 'q3', 'max'))
})))
# if a table does not already exist, this is our DF
if (input$update_table == 1) {
values$df <- make_DF(input$n_entries)
} else { # otherwise, append the new data frame to the old.
tmp_data <- hot_to_r(input$input_data)
values$df[,names(tmp_data)] <- tmp_data
values$df <- bind_rows(values$df, make_DF(input$n_entries))
}
# finally, set up table for data entry
DF_shown <- values$df[c('protein', 'MW', 'n', values$shown_variables, "units")]
output$test_output <- renderTable(values$df)
output$input_data <- renderRHandsontable({rhandsontable(DF_shown)})
})
}
shinyApp(ui = ui, server = server)
来源:https://stackoverflow.com/questions/50651618/dynamically-add-rows-to-rhandsontable-in-shiny-and-r