冒泡法大家都较熟悉。其原理为从a[0]开始,依次将其和后面的元素比较,若a[0]>a,则交换它们,一直比较到a[n]。同理对a[1],a[2],...a[n-1]处理,即完成排序。下面列出其代码:
C/C++ code
void bubble(int *a,int n) /*定义两个参数:数组首地址与数组大小*/
{
int i,j,temp;
for(i=0;i<n-1;i++)
for(j=i+1;j<n;j++) /*注意循环的上下限*/
if(a>a[j]) {
temp=a;
a=a[j];
a[j]=temp;
}
}
冒泡法原理简单,但其缺点是交换次数多,效率低。 下面介绍一种源自冒泡法但更有效率的方法“选择法”。
2)“选择法”
选择法循环过程与冒泡法一致,它还定义了记号k=i,然后依次把a[k]同后面元素比较,若a[k]>a[j],则使k=j.最后看看k=i是否还成立,不成立则交换a[k],a,这样就比冒泡法省下许多无用的交换,提高了效率。
C/C++ code
void choise(int *a,int n)
{
int i,j,k,temp;
for(i=0;i<n-1;i++)
{
k=i; /*给记号赋值*/
for(j=i+1;j<n;j++)
if(a[k]>a[j]) k=j; /*是k总是指向最小元素*/
if(i!=k) { /*当k!=i是才交换,否则a即为最小*/ temp=a;
a=a[k];
a[k]=temp;
}
}
}
3)“快速法”
快速法定义了三个参数,(数组首地址*a,要排序数组起始元素下标i,要排序数组结束元素下标j). 它首先选一个数组元素(一般为a[(i+j)/2],即中间元素)作为参照,把比它小的元素放到它的左边,比它大的放在右边。然后运用递归,在将它左,右两个子数组排序,最后完成整个数组的排序。下面分析其代码:
C/C++ code
void quick(int *a,int i,int j)
{
int m,n,temp;
int k;
m=i;
n=j;
k=a[(i+j)/2]; /*选取的参照*/
do {
while(a[m]<k && m<j) m++; /* 从左到右找比k大的元素*/
while(a[n]>k && n>i) n--; /* 从右到左找比k小的元素*/
if(m<=n) { /*若找到且满足条件,则交换*/
temp=a[m];
a[m]=a[n];
a[n]=temp;
m++;
n--;
}
}while(m<=n);
if(m<j) quick(a,m,j); /*运用递归*/
if(n>i) quick(a,i,n);
}
4)“插入法”
插入法是一种比较直观的排序方法。它首先把数组头两个元素排好序,再依次把后面的元素插入适当的位置。把数组元素插完也就完成了排序。
C/C++ code
void insert(int *a,int n)
{
int i,j,temp;
for(i=1;i<n;i++) {
temp=a; /*temp为要插入的元素*/
j=i-1;
while(j>=0&&temp<a[j]) { /*从a开始找比a小的数,同时把数组元素向后移*/
a[j+1]=a[j];
j--;
}
a[j+1]=temp; /*插入*/ }
}
5)“shell法”
shell法是一个叫 shell 的美国人与1969年发明的。它首先把相距k(k>=1)的那几个元素排好序,再缩小k值(一般取其一半),再排序,直到k=1时完成排序。下面让我们来分析其代码:
C/C++ code
void shell(int *a,int n)
{
int i,j,k,x;
k=n/2; /*间距值*/
while(k>=1) {
for(i=k;i<n;i++) {
x=a;
j=i-k;
while(j>=0&&x<a[j]) {
a[j+k]=a[j];
j-=k;
}
a[j+k]=x;
}
k/=2; /*缩小间距值*/ }
}
算法思想简单描述:在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现了这一思想。
算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。
C/C++ code
void shell_sort(int *x, int n)
{
int h, j, k, t;
for (h=n/2; h>0; h=h/2) /*控制增量*/ {
for (j=h; j<n; j++) /*这个实际上就是上面的直接插入排序*/ {
t = *(x+j);
for (k=j-h; (k>=0 && t<*(x+k)); k-=h)
{ *(x+k+h) = *(x+k);
}
*(x+k+h) = t;
}
}
}
来源:oschina
链接:https://my.oschina.net/u/1403171/blog/179232