学习爬虫之路,必经的一个小项目就是爬取豆瓣的TOP250了,首先我们进入TOP250的界面看看。
可以看到每部电影都有比较全面的简介。其中包括电影名、导演、评分等。
接下来,我们就爬取这些数据,并将这些数据制成EXCEL表格方便查看。
首先,我们用requests库请求一下该网页,并返回他的text格式。
请求并返回成功!
接下来,我们提取我们所需要的网页元素。
点击“肖申克救赎”的检查元素。
发现它在div class = "hd" -> span class = "title"里,所以我们import beautifulsoup,来定位该元素。
同时,用相同的方法定位电影的评价人数和评分以及短评。
代码如下:
soup = BeautifulSoup(res.text, 'html.parser')
names = []
scores = []
comments = []
result = []
#获取电影的所有名字
res_name = soup.find_all('div',class_="hd")
for i in res_name:
a=i.a.span.text
names.append(a)
#获取电影的评分
res_scores = soup.find_all('span',class_='rating_num')
for i in res_scores:
a=i.get_text()
scores.append(a)
#获取电影的短评
ol = soup.find('ol', class_='grid_view')
for i in ol.find_all('li'):
info = i.find('span', attrs={'class': 'inq'}) # 短评
if info:
comments.append(info.get_text())
else:
comments.append("无")
return names,scores,comments
Ok,现在,我们所需要的数据都存在三个列表里面,names,scores,comments。
我们将这三个列表存入EXCEL文件里,方便查看。
调用WorkBook方法
wb = Workbook()
filename = 'top250.xlsx'
ws1 = wb.active
ws1.title = 'TOP250'
for (i, m, o) in zip(names,scores,comments):
col_A = 'A%s' % (names.index(i) + 1)
col_B = 'B%s' % (names.index(i) + 1)
col_C = 'C%s' % (names.index(i) + 1)
ws1[col_A] = i
ws1[col_B] = m
ws1[col_C] = o
wb.save(filename=filename)
运行结束后,会生成一个.xlsx的文件,我们来看看效果:
Very Beatuful! 以后想学习之余想放松一下看看好的电影,就可以在上面直接查找啦。
以下是我的源代码:
import requests
from bs4 import BeautifulSoup
from openpyxl import Workbook
def open_url(url):
res = requests.get(url)
return res
def get_movie(res):
soup = BeautifulSoup(res.text, 'html.parser')
names = []
scores = []
comments = []
result = []
#获取电影的所有名字
res_name = soup.find_all('div',class_="hd")
for i in res_name:
a=i.a.span.text
names.append(a)
#获取电影的评分
res_scores = soup.find_all('span',class_='rating_num')
for i in res_scores:
a=i.get_text()
scores.append(a)
#获取电影的短评
ol = soup.find('ol', class_='grid_view')
for i in ol.find_all('li'):
info = i.find('span', attrs={'class': 'inq'}) # 短评
if info:
comments.append(info.get_text())
else:
comments.append("无")
return names,scores,comments
def get_page(res):
soup = BeautifulSoup(res.text,'html.parser')
#获取页数
page_num = soup.find('span',class_ ='next').previous_sibling.previous_sibling.text
return int(page_num)
def main():
host = 'https://movie.douban.com/top250'
res = open_url(host)
pages = get_page(res)
#print(pages)
names =[]
scores = []
comments = []
for i in range(pages):
url = host + '?start='+ str(25*i)+'&filter='
#print(url)
result = open_url(url)
#print(result)
a,b,c = get_movie(result)
#print(a,b,c)
names.extend(a)
scores.extend(b)
comments.extend(c)
# print(names)
# print(scores)
# print(comments)
wb = Workbook()
filename = 'top250.xlsx'
ws1 = wb.active
ws1.title = 'TOP250'
for (i, m, o) in zip(names,scores,comments):
col_A = 'A%s' % (names.index(i) + 1)
col_B = 'B%s' % (names.index(i) + 1)
col_C = 'C%s' % (names.index(i) + 1)
ws1[col_A] = i
ws1[col_B] = m
ws1[col_C] = o
wb.save(filename=filename)
if __name__ == '__main__':
main()
生成EXCEL文件还有很多种方法,下次分享Pandas生成EXCEL文件的方法~
原文出处:https://www.cnblogs.com/lesliechan/p/11739897.html
来源:oschina
链接:https://my.oschina.net/u/4400196/blog/3249150