问题
I have a .csv file with demographic data for my participants. The data are coded and downloaded from my study database (REDCap) in a way that each race has its own separate column. That is, each participant has a value in each of these columns (1 if endorsed, 0 if unendorsed).
It looks something like this:
SubjID Sex Age White AA Asian Other
001 F 62 0 1 0 0
002 M 66 1 0 0 0
I have to use a roundabout way to get my demographic summary stats. There's gotta be a simpler way to do this. My question is, how can I combine these columns into one column so that there is only one value for race for each participant? (i.e. recoding so 1 = white, 2 = AA, etc, and only the endorsed category is being pulled for each participant and added to this column?)
This is what I would like for it to look:
SubjID Sex Age Race
001 F 62 2
002 M 66 1
回答1:
This is more or less similar to our approach with similar data from REDCap. We use pivot_longer
for dummy variables. The final Race
variable could also be made a factor. Please let me know if this is what you had in mind.
Edit: Added names_ptypes
to pivot_longer
to indicate that Race
variable is a factor (instead of mutate
).
library(tidyverse)
df <- data.frame(
SubjID = c("001", "002"),
Sex = c("F", "M"),
Age = c(62, 66),
White = c(0, 1),
AA = c(1, 0),
Asian = c(0, 0),
Other = c(0, 0)
)
df %>%
pivot_longer(cols = c("White", "AA", "Asian", "Other"), names_to = "Race", names_ptypes = list(Race = factor()), values_to = "Value") %>%
filter(Value == 1) %>%
select(-Value)
Result:
# A tibble: 2 x 4
SubjID Sex Age Race
<fct> <fct> <dbl> <fct>
1 001 F 62 AA
2 002 M 66 White
回答2:
Here is another approach using reshape2
df[df == 0] <- NA
df <- reshape2::melt(df, measure.vars = c("White", "AA", "Asian", "Other"), variable.name = "Race", na.rm = TRUE)
df <- subset(df, select = -value)
# SubjID Sex Age Race
# 002 M 66 White
# 001 F 62 AA
回答3:
Here's a base approach:
race_cols <- 4:7
ind <- max.col(df[, race_cols])
df$Race_number <- ind
df$Race <- names(df[, race_cols])[ind]
df[, -race_cols]
SubjID Sex Age Race_number Race
1 001 F 62 2 AA
2 002 M 66 1 White
Data from @Ben
df <- data.frame(
SubjID = c("001", "002"),
Sex = c("F", "M"),
Age = c(62, 66),
White = c(0, 1),
AA = c(1, 0),
Asian = c(0, 0),
Other = c(0, 0)
)
来源:https://stackoverflow.com/questions/58492503/how-to-combine-multiple-data-frame-columns-in-r