问题
I have completed an origin-destination cost matrix (23 origins, ~600,000 destinations) for traveling through a street network in ArcGIS and disaggregated the resulting matrix into DBF tables by store ID using a Python script. I have loaded each DBF table into an R session as follows:
# Import OD cost matrix results for each store
origins <- read.dbf('ODM_origins.dbf')
store_17318 <- read.dbf('table_17318.dbf')
store_17358 <- read.dbf('table_17358.dbf')
store_17601 <- read.dbf('table_17601.dbf')
store_17771 <- read.dbf('table_17771.dbf')
store_18068 <- read.dbf('table_18068.dbf')
store_18261 <- read.dbf('table_18261.dbf')
store_18289 <- read.dbf('table_18289.dbf')
store_18329 <- read.dbf('table_18329.dbf')
store_18393 <- read.dbf('table_18393.dbf')
store_18503 <- read.dbf('table_18503.dbf')
store_18522 <- read.dbf('table_18522.dbf')
store_19325 <- read.dbf('table_19325.dbf')
store_19454 <- read.dbf('table_19454.dbf')
store_20068 <- read.dbf('table_20068.dbf')
store_20238 <- read.dbf('table_20238.dbf')
store_20292 <- read.dbf('table_20292.dbf')
store_20435 <- read.dbf('table_20435.dbf')
store_20465 <- read.dbf('table_20465.dbf')
store_20999 <- read.dbf('table_20999.dbf')
store_22686 <- read.dbf('table_22686.dbf')
store_22715 <- read.dbf('table_22715.dbf')
store_24445 <- read.dbf('table_24445.dbf')
store_24446 <- read.dbf('table_24446.dbf')
ID <- as.vector(origins$Name) # Create list of store IDs
object_list <- list(ls(pat="store_")) # Create list of DBF object names
Here's the layout of every data frame:
> head(store_17318)
OID_ NAME ORIGINID DESTINATIO DESTINAT_1 TOTAL_TRAV SHAPE_LENG
1 0 17318 - 17318 25 5367 1 0.2056914 202.2393
2 0 17318 - 17318 25 5368 2 0.2056914 202.2393
3 0 17318 - 17318 25 5381 5 0.2432538 224.3947
4 0 17318 - 17318 25 5382 6 0.2432538 224.3947
5 0 17318 - 17318 25 5362 7 0.3670772 294.8987
6 0 17318 - 17318 25 5363 8 0.3670772 294.8987
For every data frame, I would like to find the summary statistics (mean, SD) for travel time by store ID and write it to a new data frame. This seems like a standard split, apply, combine workflow but it involves splitting multiple objects. Any help with this problem would be appreciated.
回答1:
You can use sapply
:
res <- sapply(ls(pattern = "store_"), function(x) {
tmp <- get(x)$TOTAL_TRAV
c(mean = mean(tmp), SD = sd(tmp))
})
This will return a matrix. Columns represent store IDs. The two rows contain mean and standard deviation.
You can transform this matrix to a (transposed) data frame with
as.data.frame(t(res))
Here, the two columns contain mean and standard deviation. The row names represent store IDs.
来源:https://stackoverflow.com/questions/20791279/split-apply-and-combine-multiple-data-frames-into-one-data-frame