Why are my results still not reproducible?

≯℡__Kan透↙ 提交于 2021-02-07 06:39:11

问题


I want to get reproducible results for a CNN. I use Keras and Google Colab with GPU.

In addition to recommendations to insert certain code snippets, which should allow a reproducibility, I also added seeds to the layers.

###### This is the first code snipped to run #####

!pip install -U -q PyDrive
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from oauth2client.client import GoogleCredentials

# Authenticate and create the PyDrive client.
# This only needs to be done once per notebook.
auth.authenticate_user()
gauth = GoogleAuth()
gauth.credentials = GoogleCredentials.get_application_default()
drive = GoogleDrive(gauth)
###### This is the second code snipped to run #####

from __future__ import print_function  
import numpy as np 

import tensorflow as tf
print(tf.test.gpu_device_name())

import random as rn 
import os 
os.environ['PYTHONASHSEED'] = '0' 
np.random.seed(1)   
rn.seed(1)   
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) 

###### This is the third code snipped to run #####

from keras import backend as K

tf.set_random_seed(1) 
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)  
K.set_session(sess)   
###### This is the fourth code snipped to run #####

def model_cnn():
  model = Sequential()
  model.add(Conv2D(32, kernel_size=(3,3), kernel_initializer=initializers.glorot_uniform(seed=1), input_shape=(28,28,1)))
  model.add(BatchNormalization())
  model.add(Activation('relu'))

  model.add(Conv2D(32, kernel_size=(3,3), kernel_initializer=initializers.glorot_uniform(seed=2)))
  model.add(BatchNormalization())
  model.add(Activation('relu'))
  model.add(MaxPooling2D(pool_size=(2,2)))
  model.add(Dropout(0.25, seed=1))  

  model.add(Flatten())

  model.add(Dense(512, kernel_initializer=initializers.glorot_uniform(seed=2)))
  model.add(BatchNormalization())
  model.add(Activation('relu'))
  model.add(Dropout(0.5, seed=1))
  model.add(Dense(10, kernel_initializer=initializers.glorot_uniform(seed=2)))
  model.add(Activation('softmax'))

  model.compile(loss="categorical_crossentropy", optimizer=Adam(lr=0.001), metrics=['accuracy'])
  return model


def split_data(X,y):
  X_train_val, X_val, y_train_val, y_val = train_test_split(X, y, random_state=42, test_size=1/5, stratify=y) 
  return(X_train_val, X_val, y_train_val, y_val) 


def train_model_with_EarlyStopping(model, X, y):
  # make train and validation data
  X_tr, X_val, y_tr, y_val = split_data(X,y)

  es = EarlyStopping(monitor='val_loss', patience=20, mode='min', restore_best_weights=True)

  history = model.fit(X_tr, y_tr,
                      batch_size=64,
                      epochs=200, 
                      verbose=1,
                      validation_data=(X_val,y_val),
                      callbacks=[es])    

  return history
###### This is the fifth code snipped to run #####

train_model_with_EarlyStopping(model_cnn(), X, y)

Always I run the above code I get different results. Does the reason lies in the code, or it is simply not possible to obtain reproducible results in Google Colab with GPU support?


The complete code (there are unneccessary parts in the code, such as libraries which are not used):

!pip install -U -q PyDrive
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from oauth2client.client import GoogleCredentials
auth.authenticate_user()
gauth = GoogleAuth()
gauth.credentials = GoogleCredentials.get_application_default()
drive = GoogleDrive(gauth)
from __future__ import print_function # NEU 
import numpy as np 

import tensorflow as tf
import random as rn 
import os 
os.environ['PYTHONASHSEED'] = '0' 
np.random.seed(1)   
rn.seed(1)   
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) 
from keras import backend as K

tf.set_random_seed(1)  
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)   
K.set_session(sess)  

import os
local_root_path = os.path.expanduser("~/data/data")
print(local_root_path)
try:
  os.makedirs(local_root_path, exist_ok=True)  
except: pass

def ListFolder(google_drive_id, destination):
  file_list = drive.ListFile({'q': "'%s' in parents and trashed=false" % google_drive_id}).GetList()
  counter = 0
  for f in file_list:
    # If it is a directory then, create the dicrectory and upload the file inside it
    if f['mimeType']=='application/vnd.google-apps.folder': 
      folder_path = os.path.join(destination, f['title'])
      os.makedirs(folder_path, exist_ok=True)
      print('creating directory {}'.format(folder_path))
      ListFolder(f['id'], folder_path)
    else:
      fname = os.path.join(destination, f['title'])
      f_ = drive.CreateFile({'id': f['id']})
      f_.GetContentFile(fname)
      counter += 1
  print('{} files were uploaded in {}'.format(counter, destination))
ListFolder("1DyM_D2ZJ5UHIXmXq4uHzKqXSkLTH-lSo", local_root_path)

import glob
import h5py
from time import time
from keras import initializers 
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization, merge
from keras.layers import Convolution2D, MaxPooling2D, AveragePooling2D
from keras.optimizers import SGD, Adam, RMSprop, Adagrad, Adadelta, Adamax, Nadam
from keras.utils import np_utils
from keras.callbacks import LearningRateScheduler, ModelCheckpoint, TensorBoard, ReduceLROnPlateau
from keras.regularizers import l2
from keras.layers.advanced_activations import LeakyReLU, ELU
from keras import backend as K
import numpy as np
import pickle as pkl
from matplotlib import pyplot as plt
%matplotlib inline
import gzip
import numpy as np
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from keras.datasets import fashion_mnist
from numpy import mean, std
import matplotlib.pyplot as plt
from sklearn.model_selection import KFold, StratifiedKFold
from keras.datasets import fashion_mnist
from keras.utils import to_categorical
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
from keras.optimizers import SGD, Adam
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import auc, average_precision_score, f1_score

import time
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from google.colab import files
from PIL import Image 



def model_cnn():
  model = Sequential()
  model.add(Conv2D(32, kernel_size=(3,3), kernel_initializer=initializers.glorot_uniform(seed=1), input_shape=(28,28,1)))
  model.add(BatchNormalization())
  model.add(Activation('relu'))
  model.add(Conv2D(32, kernel_size=(3,3), kernel_initializer=initializers.glorot_uniform(seed=2)))
  model.add(BatchNormalization())
  model.add(Activation('relu'))
  model.add(MaxPooling2D(pool_size=(2,2)))
  model.add(Dropout(0.25, seed=1))  
  model.add(Flatten())
  model.add(Dense(512, kernel_initializer=initializers.glorot_uniform(seed=2)))
  model.add(BatchNormalization())
  model.add(Activation('relu'))
  model.add(Dropout(0.5, seed=1))
  model.add(Dense(10, kernel_initializer=initializers.glorot_uniform(seed=2)))
  model.add(Activation('softmax'))
  model.compile(loss="categorical_crossentropy", optimizer=Adam(lr=0.001), metrics=['accuracy'])
  return model

def train_model_with_EarlyStopping(model, X, y):
  X_tr, X_val, y_tr, y_val = split_train_val_data(X,y)
  es = EarlyStopping(monitor='val_loss', patience=20, mode='min', restore_best_weights=True)      
  history = model.fit(X_tr, y_tr,
                      batch_size=64,
                      epochs=200, 
                      verbose=1,
                      validation_data=(X_val,y_val),
                      callbacks=[es])    
  evaluate_model(model, history, X_tr, y_tr)
  return history 


```




回答1:


The problem isn't limited to Colab, and is reproducible locally. The behavior, however, may be inevitable.

Code at bottom is a minimally-reproducible version of your code, with fit parameters tweaked for faster testing. What I observed is, the maximum difference for loss is only 0.0144% for 468 iterations per run, across 5 runs. This is pretty good. With batch_size=64, 60000 samples, and 20 epochs, you'll have 18750 iterations - which will amplify this figure substantially.

Regardless, GPU parallelism is the most likely culprit driving the randomnes - and the small differences do accumulate over time to yield a substantial difference - demo below. If 1e-8 seems small, try adding random noise to half your weights w/ magnitude clipped at 1e-8, and witness its life philosophy change.

The role of the seeds becomes dramatically pronounced if you don't use them - try it, all your metrics will fly rampant within the first 10 iterations. Also, loss is better for measuring runtime differences, as accuracy's lot more sensitive to numeric precision errors: the difference between 60% accuracy and 70% accuracy on a 10-sample batch is a prediction that differs by 0.000001 w.r.t. 0.5 - but loss will barely budge.

Lastly, note that your hyperparameter choice will have a far greater impact upon model performance than randomness; no matter how many seeds you throw, they won't magic a model into SOTA. -- I recommend this fine clip.


Your code - is fine. You've taken all practical steps to ensure reproducibility, with an exception: PYTHONHASHSEED must be set before your Python kernel starts.


What can you do to reduce randomness?

  1. Repeat runs, average results. Understandably that's expensive, but note that even a perfectly reproducible run isn't perfectly informative, as model variance w.r.t. train & validation sets is likely to be much greater than noise-induced randomness

  2. K-Fold Cross-Validation: can mitigate both data & noise variance significantly

  3. Larger validation set: extracted features can differ only so much due to noise; the larger the validation set, the less small perturbations in weights should reflect in metrics


GPU Parallelism: amplifying float error

print(2. * 11. / 9.)  # 2.4444444444444446
print(2. / 9. * 11.)  # 2.444444444444444

Order of operations matters, and by exploiting multithreading, GPU parallelism gives no guarantee whatsoever of operations being executed in the same order. On a first look, the difference may look innocent - but give it enough iterations ...

one = 1
for _ in range(int(1e8)):
    one *= (2. / 9. * 11.) / (2. * 11. / 9.)
print(one)     # 0.9999999777955395
print(1 - one) # 1.8167285897874308e-08

... and a "one" is a typical small weight value of 1e-08 away from being its original self. If 100 million iterations seems to be a stretch, consider that the operation completed in ~half a minute, whereas your model can train over an hour, and former runs entirely on CPU.


Minimal reproducible experimentation:

import tensorflow as tf
import random as rn 
import numpy as np
np.random.seed(1)   
rn.seed(2)   
tf.set_random_seed(3)

from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization
from keras.layers import MaxPooling2D, Conv2D
from keras.optimizers import Adam

def model_cnn():
  model = Sequential()
  model.add(Conv2D(32, kernel_size=(3,3), 
                   kernel_initializer='he_uniform', input_shape=(28,28,1)))
  model.add(BatchNormalization())
  model.add(Activation('relu'))
  model.add(Conv2D(32, kernel_size=(3,3), kernel_initializer='he_uniform'))
  model.add(BatchNormalization())
  model.add(Activation('relu'))
  model.add(MaxPooling2D(pool_size=(2,2)))
  model.add(Dropout(0.25))
  model.add(Flatten())
  model.add(Dense(512, kernel_initializer='he_uniform'))
  model.add(BatchNormalization())
  model.add(Activation('relu'))
  model.add(Dropout(0.5))
  model.add(Dense(10, kernel_initializer='he_uniform'))
  model.add(Activation('softmax'))
  model.compile(loss="categorical_crossentropy", optimizer=Adam(lr=0.001), 
                metrics=['accuracy'])
  return model

np.random.seed(1)   
rn.seed(2)     
tf.set_random_seed(3) 

X_train = np.random.randn(30000, 28, 28, 1)
y_train = np.random.randint(0, 2, (30000, 10))
X_val   = np.random.randn(30000, 28, 28, 1)
y_val   = np.random.randint(0, 2, (30000, 10))
model = model_cnn()

np.random.seed(1)   
rn.seed(2)   
tf.set_random_seed(3)

history = model.fit(X_train, y_train, batch_size=64,shuffle=True, 
                    epochs=1, verbose=1, validation_data=(X_val,y_val))

Run differences:

loss: 12.5044 - acc: 0.0971 - val_loss: 11.5389 - val_acc: 0.1051
loss: 12.5047 - acc: 0.0958 - val_loss: 11.5369 - val_acc: 0.1018
loss: 12.5055 - acc: 0.0955 - val_loss: 11.5382 - val_acc: 0.0980
loss: 12.5042 - acc: 0.0961 - val_loss: 11.5382 - val_acc: 0.1179
loss: 12.5062 - acc: 0.0960 - val_loss: 11.5366 - val_acc: 0.1082


来源:https://stackoverflow.com/questions/58433555/why-are-my-results-still-not-reproducible

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!