Complex cumulative sum with double resets

て烟熏妆下的殇ゞ 提交于 2021-02-07 04:08:50

问题


I'm trying to follow some rules about when to group data to chart. How would I go from this data frame:

# A tibble: 11 x 8
   assay      year   qtr invalid valid total_assays    hfr predicted_inv
   <chr>     <dbl> <dbl>   <dbl> <dbl>        <dbl>  <dbl>         <dbl>
 1 test_case 2016.    1.      2.   36.          38. 0.0350         1.33 
 2 test_case 2016.    2.      1.   34.          35. 0.0350         1.23 
 3 test_case 2016.    3.      0.   25.          25. 0.0350         0.875
 4 test_case 2016.    4.      2.   23.          25. 0.0350         0.875
 5 test_case 2017.    1.      1.   29.          30. 0.0350         1.05 
 6 test_case 2017.    2.      2.   24.          26. 0.0350         0.910
 7 test_case 2017.    3.      0.   23.          23. 0.0350         0.805
 8 test_case 2017.    4.      1.   20.          21. 0.0350         0.735
 9 test_case 2018.    1.      2.   33.          35. 0.0350         1.23 
10 test_case 2018.    2.      5.   28.          33. 0.0350         1.16 
11 test_case 2018.    3.      4.    9.          13. 0.0350         0.455

To this one:

       assay year qtr invalid valid total_assays   hfr predicted_inv co_inv co_val co_prd_inv trend
1  test_case 2016   1       2    36           38 0.035         1.330      2     36      1.330    No
2  test_case 2016   2       1    34           35 0.035         1.225      3     70      2.555    No
3  test_case 2016   3       0    25           25 0.035         0.875      3     95      3.430    No
4  test_case 2016   4       2    23           25 0.035         0.875      5    118      4.305   Yes
5  test_case 2017   1       1    29           30 0.035         1.050      1     29      1.050    No
6  test_case 2017   2       2    24           26 0.035         0.910      3     53      1.960    No
7  test_case 2017   3       0    23           23 0.035         0.805      3     76      2.765    No
8  test_case 2017   4       1    20           21 0.035         0.735      4     96      3.500    No
9  test_case 2018   1       2    33           35 0.035         1.225      6    129      4.725   Yes
10 test_case 2018   2       5    28           33 0.035         1.155      5     28      1.155   Yes
11 test_case 2018   3       4     9           13 0.035         0.455      4      9      0.455    No

The rules are fairly simple. For each row, if the cumulative sum of either invalid or predicted_inv is 5 or greater, then trend is 'yes' and the cumulative sums of all three parameters (invalid, valid, predicted_inv) are reset and start again from the next row. In the end the groupings (co_*) would be trended.

I've tried some solutions using dplyr, but I keep getting errors when I try to create multiple interdependent variables at the same time.

Now I'm trying a custom function that takes just the 3 parameters as vectors, but I keep being forced to build loops... I would prefer an easy to read dplyr solution.

Here are the dputs:

egdf1 <- structure(list(assay = c("test_case", "test_case", "test_case", 
                         "test_case", "test_case", "test_case", "test_case", "test_case", 
                         "test_case", "test_case", "test_case"), year = c(2016, 2016, 
                                                                          2016, 2016, 2017, 2017, 2017, 2017, 2018, 2018, 2018), qtr = c(1, 
                                                                                                                                         2, 3, 4, 1, 2, 3, 4, 1, 2, 3), invalid = c(2, 1, 0, 2, 1, 2, 
                                                                                                                                                                                    0, 1, 2, 5, 4), valid = c(36, 34, 25, 23, 29, 24, 23, 20, 33, 
                                                                                                                                                                                                              28, 9), total_assays = c(38, 35, 25, 25, 30, 26, 23, 21, 35, 
                                                                                                                                                                                                                                       33, 13), hfr = c(0.035, 0.035, 0.035, 0.035, 0.035, 0.035, 0.035, 
                                                                                                                                                                                                                                                        0.035, 0.035, 0.035, 0.035), predicted_inv = c(1.33, 1.225, 0.875, 
                                                                                                                                                                                                                                                                                                       0.875, 1.05, 0.91, 0.805, 0.735, 1.225, 1.155, 0.455)), .Names = c("assay", 
                                                                                                                                                                                                                                                                                                                                                                          "year", "qtr", "invalid", "valid", "total_assays", "hfr", "predicted_inv"
                                                                                                                                                                                                                                                                                                       ), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA, 
                                                                                                                                                                                                                                                                                                                                                                  -11L))

egdf2 <- structure(list(assay = c("test_case", "test_case", "test_case", 
                         "test_case", "test_case", "test_case", "test_case", "test_case", 
                         "test_case", "test_case", "test_case"), year = c(2016L, 2016L, 
                                                                          2016L, 2016L, 2017L, 2017L, 2017L, 2017L, 2018L, 2018L, 2018L
                         ), qtr = c(1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L), invalid = c(2L, 
                                                                                             1L, 0L, 2L, 1L, 2L, 0L, 1L, 2L, 5L, 4L), valid = c(36L, 34L, 
                                                                                                                                                25L, 23L, 29L, 24L, 23L, 20L, 33L, 28L, 9L), total_assays = c(38L, 
                                                                                                                                                                                                              35L, 25L, 25L, 30L, 26L, 23L, 21L, 35L, 33L, 13L), hfr = c(0.035, 
                                                                                                                                                                                                                                                                         0.035, 0.035, 0.035, 0.035, 0.035, 0.035, 0.035, 0.035, 0.035, 
                                                                                                                                                                                                                                                                         0.035), predicted_inv = c(1.33, 1.225, 0.875, 0.875, 1.05, 0.91, 
                                                                                                                                                                                                                                                                                                   0.805, 0.735, 1.225, 1.155, 0.455), co_inv = c(2L, 3L, 3L, 5L, 
                                                                                                                                                                                                                                                                                                                                                  1L, 3L, 3L, 4L, 6L, 5L, 4L), co_val = c(36L, 70L, 95L, 118L, 
                                                                                                                                                                                                                                                                                                                                                                                          29L, 53L, 76L, 96L, 129L, 28L, 9L), co_prd_inv = c(1.33, 2.555, 
                                                                                                                                                                                                                                                                                                                                                                                                                                             3.43, 4.305, 1.05, 1.96, 2.765, 3.5, 4.725, 1.155, 0.455), trend = c("No", 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  "No", "No", "Yes", "No", "No", "No", "No", "Yes", "Yes", "No"
                                                                                                                                                                                                                                                                                                                                                                                                                                             )), .Names = c("assay", "year", "qtr", "invalid", "valid", "total_assays", 
                                                                                                                                                                                                                                                                                                                                                                                                                                                            "hfr", "predicted_inv", "co_inv", "co_val", "co_prd_inv", "trend"
                                                                                                                                                                                                                                                                                                                                                                                                                                         ), class = "data.frame", row.names = c(NA, -11L))

回答1:


Using the function cumsumbinning from the MESS package to set up the value of the threshold that the cumulative group sum must not cross (5 in your example). Please bear in mind that in row 9 because adding 2 to 4 crosses the threshold of 5 creates another group, while in your desired output you want that reset in the next row.

library(MESS)  
  egdf1 %>%
  group_by(group = cumsumbinning(invalid, 5)) %>%
  mutate(
    co_inv = cumsum(invalid),
    co_val = cumsum(valid),
    co_prd_inv = cumsum(predicted_inv),
    trend = ifelse(group - lag(group, default = 0) > 1, "yes", "no")
  )

Output

   assay      year   qtr invalid valid total_assays   hfr predicted_inv group co_inv co_val co_prd_inv trend
   <chr>     <dbl> <dbl>   <dbl> <dbl>        <dbl> <dbl>         <dbl> <int>  <dbl>  <dbl>      <dbl> <chr>
 1 test_case  2016     1       2    36           38 0.035         1.33      1      2     36      1.33  no   
 2 test_case  2016     2       1    34           35 0.035         1.23      1      3     70      2.56  no   
 3 test_case  2016     3       0    25           25 0.035         0.875     1      3     95      3.43  no   
 4 test_case  2016     4       2    23           25 0.035         0.875     1      5    118      4.30  no   
 5 test_case  2017     1       1    29           30 0.035         1.05      2      1     29      1.05  yes  
 6 test_case  2017     2       2    24           26 0.035         0.91      2      3     53      1.96  no   
 7 test_case  2017     3       0    23           23 0.035         0.805     2      3     76      2.76  no   
 8 test_case  2017     4       1    20           21 0.035         0.735     2      4     96      3.5   no   
 9 test_case  2018     1       2    33           35 0.035         1.23      3      2     33      1.23  yes  
10 test_case  2018     2       5    28           33 0.035         1.16      4      5     28      1.16  yes  
11 test_case  2018     3       4     9           13 0.035         0.455     5      4      9      0.455 yes 



回答2:


A base R solution using Reduce:

cs <- Reduce(function(x, y) if (max(x[1], x[3]) < 5) x + y else y,
             Map(c, egdf1$invalid, egdf1$valid, egdf1$predicted_inv),
             accumulate = TRUE)

co <- do.call(rbind.data.frame, cs)
names(co) <- c("co_inv", "co_val", "co_prd_inv")

co$trend <- ifelse(pmax(co$co_inv, co$co_prd_inv) >= 5, "Yes", "No")

all.equal(cbind(egdf1, co), egdf2)
# [1] TRUE


来源:https://stackoverflow.com/questions/51936638/complex-cumulative-sum-with-double-resets

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!