问题
As the title describes, I'm simply trying to create a shiny application that allows the user to generate linear regression plots based on an imported csv file. After importing the file the dropdown for the variables of interest should be dynamically updated.
As the code below shows, I'm able to accomplish that with mtcars but I'm not able to do the same with an imported files that would have different dependent and independent variables .
Thank you for your help
data(mtcars)
cols <- sort(unique(names(mtcars)[names(mtcars) != 'mpg']))
ui <- fluidPage(
titlePanel("Build a Linear Model for MPG"),
sidebarPanel(
#fluidRow(
#column(4,
#tags$h3('Build a Linear Model for MPG'),
fileInput(
inputId = "filedata",
label = "Upload data. csv",
accept = c(".csv")
),
fileInput(
inputId = "filedata1",
label = "Upload data. csv",
accept = c(".csv")
),
selectInput('vars',
'Select dependent variables',
choices = cols,
selected = cols[1:2],
multiple = TRUE)
#)
), #sidebarpanel
mainPanel( column(4, verbatimTextOutput('lmSummary')),
column(4, plotOutput('diagnosticPlot')))
) #fluidpage
server <- function(input, output) {
data <- reactive({
req(input$filedata)
read.csv(input$filedata$datapath) %>% rename_all(tolower) %>%
filter(driver_name == input$driver_name & county == input$county & model == input$model)
})
lmModel <- reactive({lm(sprintf('mpg ~ %s', paste(input$vars, collapse = '+')),
data = mtcars)})
# lmModel <- reactive({lm(sprintf('mpg ~ %s', paste(input$vars, collapse = '+')),
# data = mtcars)})
output$lmSummary <- renderPrint({
summary(lmModel())
})
output$diagnosticPlot <- renderPlot({
par(mfrow = c(2,2))
plot(lmModel())
})
}
shinyApp(ui = ui, server = server)```
回答1:
To dynamically select x and y axis variables, you can try the following
ui <- fluidPage(
titlePanel("Build a Linear Model"),
sidebarPanel(
fileInput(
inputId = "filedata",
label = "Upload data. csv",
multiple = FALSE,
accept = c(".csv"),
buttonLabel = "Choosing ...",
placeholder = "No files selected yet"
),
uiOutput("xvariable"),
uiOutput("yvariable")
), #sidebarpanel
mainPanel( #DTOutput("tb1"),
fluidRow(column(6, verbatimTextOutput('lmSummary')) , column(6, plotOutput('diagnosticPlot')))
)
) #fluidpage
server <- function(input, output) {
data <- reactive({
req(input$filedata)
inData <- input$filedata
if (is.null(inData)){ return(NULL) }
mydata <- read.csv(inData$datapath, header = TRUE, sep=",")
})
output$tb1 <- renderDT(data())
output$xvariable <- renderUI({
req(data())
xa<-colnames(data())
pickerInput(inputId = 'xvar',
label = 'Select x-axis variable',
choices = c(xa[1:length(xa)]), selected=xa[1],
options = list(`style` = "btn-info"))
})
output$yvariable <- renderUI({
req(data())
ya<-colnames(data())
pickerInput(inputId = 'yvar',
label = 'Select y-axis variable',
choices = c(ya[1:length(ya)]), selected=ya[2],
options = list(`style` = "btn-info"))
})
lmModel <- reactive({
req(data(),input$xvar,input$yvar)
x <- as.numeric(data()[[as.name(input$xvar)]])
y <- as.numeric(data()[[as.name(input$yvar)]])
if (length(x) == length(y)){
model <- lm(x ~ y, data = data(), na.action=na.exclude)
}else model <- NULL
return(model)
})
output$lmSummary <- renderPrint({
req(lmModel())
summary(lmModel())
})
output$diagnosticPlot <- renderPlot({
req(lmModel())
par(mfrow = c(2,2))
plot(lmModel())
})
}
shinyApp(ui = ui, server = server)
回答2:
Addressing the dynamic menu:
Your selectInput
element must be placed in the server section for it to be reactive. Things in the ui
section are basically static. Use a uiOutput
in the ui
section and renderUI
in the server
section.
- ui section (in place of selectInput block):
uiOutput("var_select_ui")
- server section (add):
output$var_select_ui <- renderUI({
cols <- colnames(data())
selectInput(
'vars',
'Select dependent variables',
choices = cols,
selected = cols[1:2],
multiple = TRUE
)
})
来源:https://stackoverflow.com/questions/65397766/shiny-application-for-linear-regression-with-dynamic-variable-dropdown-based-on