问题
Hi I’m starting to use r and am stuck on analyzing my data. I have a dataframe that has 80 columns. Column 1 is the dependent variable and from column 2 to 80 they are the independent variables. I want to perform 78 multiple linear regressions leaving the first independent variable of the model fixed (column 2) and create a list where I can to save all regressions to later be able to compare the models using AIC scores. how can i do it?
Here is my loop
data.frame
for(i in 2:80)
{
Regressions <- lm(data.frame$column1 ~ data.frame$column2 + data.frame [,i])
}
回答1:
Using the iris
dataset as an example you can do:
lapply(seq_along(iris)[-c(1:2)], function(x) lm(data = iris[,c(1:2, x)]))
[[1]]
Call:
lm(data = iris[, c(1:2, x)])
Coefficients:
(Intercept) Sepal.Width Petal.Length
2.2491 0.5955 0.4719
[[2]]
Call:
lm(data = iris[, c(1:2, x)])
Coefficients:
(Intercept) Sepal.Width Petal.Width
3.4573 0.3991 0.9721
[[3]]
Call:
lm(data = iris[, c(1:2, x)])
Coefficients:
(Intercept) Sepal.Width Speciesversicolor Speciesvirginica
2.2514 0.8036 1.4587 1.9468
This works because when you pass a dataframe to lm()
without a formula it applies the function DF2formula()
under the hood which treats the first column as the response and all other columns as predictors.
回答2:
With the for
loop we can initialize a list
to store the output
nm1 <- names(df1)[2:80]
Regressions <- vector('list', length(nm1))
for(i in seq_along(Regressions)) {
Regressions[[i]] <- lm(reformulate(c("column2", nm1[i]), "column1"), data = df1)
}
Or use paste
instead of reformulate
for(i in seq_along(Regressions)) {
Regressions[[i]] <- lm(as.formula(paste0("column1 ~ column2 + ",
nm1[i])), data = df1)
}
Using a reproducible example
nm2 <- names(iris)[3:5]
Regressions2 <- vector('list', length(nm2))
for(i in seq_along(Regressions2)) {
Regressions2[[i]] <- lm(reformulate(c("Sepal.Width", nm2[i]), "Sepal.Length"), data = iris)
}
Regressions2[[1]]
#Call:
#lm(formula = reformulate(c("Sepal.Width", nm2[i]), "Sepal.Length"),
# data = iris)
#Coefficients:
# (Intercept) Sepal.Width Petal.Length
# 2.2491 0.5955 0.4719
来源:https://stackoverflow.com/questions/61069878/loop-for-multiple-linear-regression