问题
I was trying to write a QuickCheck test for the identity
f $ y = f y
My initial plan was to write an arbitrary generator that returns functions & Integer, having the signature Gen (Int -> Int, Int)
and in the prop_DollerDoesNothing
test that function application with / without the $
gives the same result.
This was my code:
prop_DollarDoesNothing :: Property
prop_DollarDoesNothing =
forAll arbitraryFuncInt (\(f, y) -> (f $ y) == (f y))
arbitraryFuncInt :: Gen (Int -> Int, Int)
arbitraryFuncInt = do
f <- elements [(\x -> x*2), (\x -> x+3), (\x -> x-2)]
y <- arbitrary :: Gen Int
return (f, y)
And it generated the following helpful error message:
* No instance for (Show (Int -> Int))
arising from a use of `forAll'
(maybe you haven't applied a function to enough arguments?)
* In the expression:
forAll arbitraryFuncInt (\ (f, y) -> (f $ y) == (f y))
In an equation for `prop_DollarDoesNothing':
prop_DollarDoesNothing
= forAll arbitraryFuncInt (\ (f, y) -> (f $ y) == (f y))
So, I fixed the error and got the test working by applying the arbitrary function and returning a pair of ints from arbitraryFuncInt
prop_DollarDoesNothing :: Property
prop_DollarDoesNothing =
forAll arbitraryFuncInt (\(x, y) -> x == y)
arbitraryFuncInt :: Gen (Int, Int)
arbitraryFuncInt = do
f <- elements [(\x -> x*2), (\x -> x+3), (\x -> x-2)]
y <- arbitrary :: Gen Int
return (f $ y, f y)
My questions are:
- is it simply not possible to return arbitrary functions that aren't fully applied due to not having an instance for
Show
? - Can I write an instance for
Show (Int -> Int)
to make# 1
possible? - Can QuickCheck generate arbitrary functions given a type signature, for cases where I'm testing identities that are true for all functions (of a given type). Above, I specify the 3 test functions by hand, I'd like to automate that somehow, ideally something like this
f <- arbitrary :: Gen (Int -> Int)
回答1:
QuickCheck has support to generate, shrink and show functions, using the Fun
type. CoArbitrary
enables generation of functions. It is then converted to a (possibly infinite) trie-like structure, that can be inspected and shrunk to a finite value (because a test failure only depends on finitely many inputs), which can then be shown as a counterexample.
Concretely, you can write properties as function that take a Fun
argument, which is a wrapper around (->)
using the mechanism I described. Deconstruct it with the Fn
pattern to get a function.
prop_dollarDoesNothing :: Property
prop_dollarDoesNothing = property $ \(Fn (f :: Int -> Int)) x ->
(f $ x) === f x
For more information
The QuickCheck implementation: https://hackage.haskell.org/package/QuickCheck-2.11.3/docs/Test-QuickCheck-Function.html
The paper "Shrinking and showing functions" by Koen Claessen, which appears to be paywalled, but his talk is online: https://www.youtube.com/watch?v=CH8UQJiv9Q4
回答2:
Arbitrary
can generate functions just fine (provided the arguments are instances of CoArbitrary), it's just the showing part that doesn't work. There's not really a good way to show a function.
This is a common problem, and therefore QuickCheck provides the Blind modifier. It basically fakes a Show
instances for any type, not actually showing any information about the value. Of course this somewhat diminishes the debugging-usefulness of a failing test case, but there's not much that can done about this.
来源:https://stackoverflow.com/questions/50629967/is-it-possible-to-generate-arbitrary-functions-in-quickcheck