问题
I am attempting to use R to query a large database. Due to the size of the database, I have written the query to fetch 100 rows at a time My code looks something like:
library(RJDBC)
library(DBI)
library(tidyverse)
options(java.parameters = "-Xmx8000m")
drv<-JDBC("driver name", "driver path.jar")
conn<-
dbConnect(
drv,
"database info",
"username",
"password"
)
query<-"SELECT * FROM some_table"
hc<-tibble()
res<-dbSendQuery(conn,query)
repeat{
chunk<-dbFetch(res,100)
if(nrow(chunk)==0){break}
hc<-bind_rows(hc,chunk)
print(nrow(hc))
}
Basically, I would like write something that does the same thing, but via the combination of function
and lapply
. In theory, given the way R processes data via loops, using lapply
will speed up query. Some understanding of the dbFetch
function may help. Specifically, how in the repeat
loop it doesn't just keep selecting the first initial 100 rows.
I have tried the following, but nothing works:
df_list <- lapply(query , function(x) dbGetQuery(conn, x))
hc<-tibble()
res<-dbSendQuery(conn,query)
test_query<-function(x){
chunk<-dbFetch(res,100)
if(nrow(chunk)==0){break}
print(nrow(hc))
}
bind_rows(lapply(test_query,res))
回答1:
The following works well, as it allows the user to customize the size and number of chunks. Ideally, the function would be Vectorized somehow.
I explored getting the number of rows to automatically set the chunk number, but I couldn't find any methods without actually needing to perform the query first. Adding a large number of chunks doesn't add a ton of extra process time. The performance improvement over the repeat
approach depends on the size of the data, but the bigger the data the bigger the performance improvement.
Chunks of n = 1000 seem to consistently produce the best results. Any suggestions to these points would be much appreciated.
Solution:
library(RJDBC)
library(DBI)
library(dplyr)
library(tidyr)
res<-dbSendQuery(conn,"SELECT * FROM some_table")
##Multiplied together need to be greater than N
chunk_size<-1000
chunk_number<-150
run_chunks<-
function(chunk_number, res, chunk_size) {
chunk <-
tryCatch(
dbFetch(res, chunk_size),
error = function(e) NULL
)
if(!is.null(chunk)){
return(chunk)
}
}
dat<-
bind_rows(
lapply(
1:chunk_number,
run_chunks,
res,
chunk_size
)
)
回答2:
Consider following the example in dbFetch docs that checks for completed status of fetch, dbHasCompleted
. Then, for memory efficiency build a list of data frames/tibbles with lapply
then row bind once outside the loop.
rs <- dbSendQuery(con, "SELECT * FROM some_table")
run_chunks <- function(i, res) {
# base::transform OR dplyr::mutate
# base::tryCatch => for empty chunks depending on chunk number
chunk <- tryCatch(transform(dbFetch(res, 100), chunk_no = i),
error = function(e) NULL)
return(chunk)
}
while (!dbHasCompleted(rs)) {
# PROVIDE SUFFICIENT NUMBER OF CHUNKS (table rows / fetch rows)
df_list <- lapply(1:5, run_chunks, res=rs)
}
# base::do.call(rbind, ...) OR dplyr::bind_rows(...)
final_df <- do.call(rbind, df_list)
Demonstration with in-memory SQLite database of mtcars
:
con <- dbConnect(RSQLite::SQLite(), ":memory:")
dbWriteTable(con, "mtcars", mtcars)
run_chunks <- function(i, res) {
chunk <- dbFetch(res, 10)
return(chunk)
}
rs <- dbSendQuery(con, "SELECT * FROM mtcars")
while (!dbHasCompleted(rs)) {
# PROVIDE SUFFICIENT NUMBER OF CHUNKS (table rows / fetch rows)
df_list <- lapply(1:5, function(i)
print(run_chunks(i, res=rs))
)
}
do.call(rbind, df_list)
dbClearResult(rs)
dbDisconnect(con)
Output (5 chunks of 10 rows, 10 rows, 10 rows, 2 rows, 0 rows, and full 32 rows)
# mpg cyl disp hp drat wt qsec vs am gear carb
# 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
# 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
# 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
# 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
# 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
# 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
# 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
# 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
# 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
# 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
# mpg cyl disp hp drat wt qsec vs am gear carb
# 1 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
# 2 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
# 3 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
# 4 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
# 5 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
# 6 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
# 7 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
# 8 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
# 9 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
# 10 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
# mpg cyl disp hp drat wt qsec vs am gear carb
# 1 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
# 2 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
# 3 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
# 4 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
# 5 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
# 6 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
# 7 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
# 8 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
# 9 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
# 10 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
# mpg cyl disp hp drat wt qsec vs am gear carb
# 1 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8
# 2 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2
# [1] mpg cyl disp hp drat wt qsec vs am gear carb
# <0 rows> (or 0-length row.names)
do.call(rbind, df_list)
# mpg cyl disp hp drat wt qsec vs am gear carb
# 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
# 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
# 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
# 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
# 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
# 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
# 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
# 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
# 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
# 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
# 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
# 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
# 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
# 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
# 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
# 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
# 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
# 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
# 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
# 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
# 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
# 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
# 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
# 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
# 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
# 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
# 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
# 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
# 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
# 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
# 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
# 32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
来源:https://stackoverflow.com/questions/59162838/optimize-vectorize-database-query-with-r