问题
I've put together a plot to view groups separately but now want to include significance levels for mean pairwise comparison in the plot. While I can do the comparison outside of the plot I'm wondering what the most efficient way of including the comparison in the plot would be?
Current Plot
library(tidyverse)
dsub <- diamonds[ sample(nrow(diamonds), 10000), ]
dsub <- dsub %>%
filter(clarity %in% c('VS2', 'VS1', 'VVS2'))
ggplot(dsub, aes(x = cut, y = carat, fill = clarity)) +
geom_boxplot(outlier.size = 0) +
geom_point(pch = 21, position = position_jitterdodge())
Now I want to add the comparisons within each level of the cut
variable between all levels of the clarity
variable. I prefer using ggpubr
but couldn't see where this could be achieved.
回答1:
EDITED to take OP preference for output into account
Ahhhh... okay well let me at least save you a bunch of vertical space and neaten things up by overcoming the fact that rstatix
doesn't honor the order of your factors and ggpubr
wants its groups as character not factor.
library(ggplot2)
library(dplyr)
dsub <- diamonds[ sample(nrow(diamonds), 10000), ]
dsub <- dsub %>%
filter(clarity %in% c('VS2', 'VS1', 'VVS2'))
dsub <- droplevels(dsub)
dsub_stats <-
dsub %>%
group_by(cut) %>%
rstatix::wilcox_test(carat~clarity) %>%
mutate(group1 = factor(group1,
ordered = TRUE,
levels = c("VS2", "VS1", "VVS2"))) %>%
arrange(cut, group1) %>%
mutate(group1 = as.character(group1)) %>%
rstatix::add_xy_position(x='cut')
ggpubr::ggboxplot(dsub, x = "cut", y = "carat",
color = "clarity",
add='jitter') +
ggpubr::stat_pvalue_manual(dsub_stats,
label = "p.adj.signif",
tip.length = 0.01)
Created on 2020-09-24 by the reprex package (v0.3.0)
回答2:
library(tidyverse)
library(rstatix)
library(ggpubr)
dsub <- diamonds[ sample(nrow(diamonds), 10000), ]
dsub <- dsub %>%
filter(clarity %in% c('VS2', 'VS1', 'VVS2'))
dsub_stats <- dsub %>%
group_by(cut) %>%
wilcox_test(carat~clarity) %>% add_xy_position(x='cut')
ggboxplot(dsub, x = "cut", y = "carat",
color = "clarity",
add='jitter'
) +
stat_pvalue_manual(dsub_stats, label = "p.adj.signif", tip.length = 0.01)
来源:https://stackoverflow.com/questions/64051045/plot-pvalue-information-for-mean-comparisons-by-grouping-variable